Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering results. The comparative was conducted using three credit scoring datasets: Australian, German and Taiwan. Internal and external indexes of validity clustering are computed and the proposed method was found to have the best performance in these three data sets.
Abstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreThe matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single l
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreMalaysia has been supported by one of the high-speed fiber internet connections called TM UniFi. TM UniFi is very familiar to be used as a medium to apply Small Office Home Office (SOHO) concept due to the COVID-19 pandemic. Most of the communication vendors offer varieties of network services to fulfill customers' needs and satisfaction during the pandemic. Quality of Services is queried by most users by the fact of increased on users from time to time. Therefore, it is crucial to know the network performance contrary to the number of devices connected to the TM UniFi network. The main objective of this research is to analyze TM UniFi performance with the impact of multiple device connections or users' services. The study was conducted
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreNH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreThis thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).
Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.
The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was
... Show MoreClassical cryptography systems exhibit major vulnerabilities because of the rapid development of quan tum computing algorithms and devices. These vulnerabilities were mitigated utilizing quantum key distribution (QKD), which is based on a quantum no-cloning algorithm that assures the safe generation and transmission of the encryption keys. A quantum computing platform, named Qiskit, was utilized by many recent researchers to analyze the security of several QKD protocols, such as BB84 and B92. In this paper, we demonstrate the simulation and implementation of a modified multistage QKD protocol by Qiskit. The simulation and implementation studies were based on the “local_qasm” simulator and the “FakeVigo” backend, respectively. T
... Show More