Preferred Language
Articles
/
1RbfcYcBVTCNdQwCQEq1
Development of new computational machine learning models for longitudinal dispersion coefficient determination: case study of natural streams, United States
...Show More Authors

Crossref
View Publication
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Determination the dispersion parameters and urbach tail of iron chromate doped PMMA films
...Show More Authors

Films of pure Poly (methyl methacrylate) PMMA and Iron chromate doped PMMA have been prepared using casting method. Transmission and absorptance spectra have been recorded in the wavelength range (300-900) nm, in order to calculate, single oscillator energy, dispersion energy proposed by Wemple - DiDomenico model, average oscillator strength, average oscillator wavelength. The refractive index data at infinite wavelength which was found to obey single oscillator model which was found to increase from 2.27-2.56 as the doping percentage increase. The decreasing in the optical energy gap which was found according to Tauc model were (3.74-3.63) eV , is in good agreement with that obtained by wimple-DiDomenico model. The inverse behavior comp

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Journal Of Geochemical Exploration
Geochemical exploration using surveys of spring water, hydrocarbon and gas seepage, and geobotany for determining the surface extension of Abu-Jir Fault Zone in Iraq: A new way for determining geometrical shapes of computational simulation models
...Show More Authors

View Publication
Crossref (34)
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Classification Based on Weighted Extreme Learning Machine
...Show More Authors

The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed   a great competence of the proposed WELM compared to the ELM. 

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Prediction of Brain Stroke at an Early Stage
...Show More Authors

     The healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Determination of moisture content in some materials using linear attenuation coefficient
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Computers & Electrical Engineering
Utilizing different types of deep learning models for classification of series arc in photovoltaics systems
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
The Calculation of the Charge Density Distributions and the Longitudinal Form Factors of 10 B Nucleus by Using the Occupation Numbers of the States
...Show More Authors

The charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.

View Publication Preview PDF