The Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two main parts: the main station part and the wireless house nodes part. The local wireless communication between the house nodes and the main station is done through ZigBee technology with low power and low data rate. The mode of operation of these house nodes can be configured dynamically by the end user and determined multicast or broadcast operation according to the user requirements. The implementation and upgrading of SHNS are costless, flexible and required less power comparing with other reviewed systems.
Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that
... Show MoreThis review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology
... Show MoreLink failure refers to the failure between two connections/nodes in a perfectly working simulation scenario at a particular instance. Transport layer routing protocols form an important basis of setting up a simulation, with Transmission Control Protocol and User Datagram Protocol being the primary of them. The research makes use of Network Simulator v2.35 to conduct different simulation experiments for link failure and provide validation results. In this paper, both protocols, TCP and UDP are compared based on the throughput of packets delivered from one node to the other constrained to the condition that for a certain interval of time the link fails and the simulation time remains the same for either of the protocols. Overall,
... Show MoreMilling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, bu
... Show MoreAlthough its wide utilization in microbial cultures, the one factor-at-a-time method, failed to find the true optimum, this is due to the interaction between optimized parameters which is not taken into account. Therefore, in order to find the true optimum conditions, it is necessary to repeat the one factor-at-a-time method in many sequential experimental runs, which is extremely time-consuming and expensive for many variables. This work is an attempt to enhance bioactive yellow pigment production by Streptomyces thinghirensis based on a statistical design. The yellow pigment demonstrated inhibitory effects against Escherichia coli and Staphylococcus aureus and was characterized by UV-vis spectroscopy which showed lambda maximum of
... Show MoreAmong many problems that reduced the performance of the network, especially Wide Area Network, congestion is one of these, which is caused when traffic request reaches or exceeds the available capacity of a route, resulting in blocking and less throughput per unit time. Congestion management attributes try to manage such cases. The work presented in this paper deals with an important issue that is the Quality of Service (QoS) techniques. QoS is the combination effect on service level, which locates the user's degree of contentment of the service. In this paper, packet schedulers (FIFO, WFQ, CQ and PQ) were implemented and evaluated under different applications with different priorities. The results show that WFQ scheduler gives acceptable r
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MoreInformation from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show More