Preferred Language
Articles
/
1RYEBYcBVTCNdQwCjy31
Speech Enhancement Algorithm Based on a Hybrid Estimator
...Show More Authors
Abstract<p>Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Krawtchouk-Tchebichef transform (DKTT) has a high energy compaction and provides a high matching between Laplacian density and its coefficients distribution that affects positively on reducing residual noise without sacrificing speech components. Moreover, a cascade combination of hybrid speech estimator is proposed by using two stages filters (non-linear and linear) based on DKTT domain to lessen the residual noise effectively without distorting the speech signal. The linear estimator is considered as a post processing filter that reinforces the suppression of noise by regenerate speech components. To this end, the output results have been compared with existing work in terms of different quality and intelligibility measures. The comparative evaluation confirms the superior achievements of the proposed SEA in various noisy environments. The improvement ratio of the presented algorithm in terms of PESQ measure are 5.8% and 1.8% for white and babble noise environments, respectively. In addition, the improvement ratio of the presented algorithm in terms of OVL measure are 15.7% and 9.8% for white and babble noise environments, respectively.</p>
Crossref
View Publication
Publication Date
Sat Jul 08 2017
Journal Name
Neural Computing And Applications
A new algorithm of modified binary particle swarm optimization based on the Gustafson-Kessel for credit risk assessment
...Show More Authors

View Publication
Scopus (34)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Hybrid Transform Based Denoising with Block Thresholding
...Show More Authors

A frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
2018 Third Scientific Conference Of Electrical Engineering (scee)
An Intelligent Cognitive System Design for Mobile Robot based on Optimization Algorithm
...Show More Authors

View Publication
Scopus (7)
Scopus Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification
...Show More Authors

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (26)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Jan 04 2021
Journal Name
Multimedia Tools And Applications
Attention enhancement system for college students with brain biofeedback signals based on virtual reality
...Show More Authors

View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Sep 21 2013
Journal Name
Nonlinear Dynamics
BER performance enhancement for secure wireless optical communication systems based on chaotic MIMO techniques
...Show More Authors

View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of The College Of Languages (jcl)
A Critical Discourse Analysis of Hate Speech
...Show More Authors

Online communication on social networks has become a never-given-up way of expressing and sharing views and opinions within the realm of all topics on earth, and that is that! A basis essential in this is the limits at which "freedom of expression" should not be trespassed so as not to fall into the expression of "hate speech". These two ends make a base in the UN regulations pertaining to human rights: One is free to express, but not to hate by expression. Hereunder, a Critical Discourse Analysis in terms of Fairclough's dialectical-relational approach (2001) is made of Facebook posts (being made by common people, and not of official nature)  targeting Islam and Muslims. This is made so as to recognize these instances of "speech" a

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
A Hybrid Coefficient Decimation- Interpolation Based Reconfigurable Low Complexity Filter Bank for Cognitive Radio
...Show More Authors

Non uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at

... Show More
View Publication Preview PDF