Using a mathematical model to simulate the interaction between prey and predator was suggested and researched. It was believed that the model would entail predator cannibalism and constant refuge in the predator population, while the prey population would experience predation fear and need for a predator-dependent refuge. This study aimed to examine the proposed model's long-term behavior and explore the effects of the model's key parameters. The model's solution was demonstrated to be limited and positive. All potential equilibrium points' existence and stability were tested. When possible, the appropriate Lyapunov function was utilized to demonstrate the equilibrium points' overall stability. The system's persistence requirements were specified. The circumstances of local bifurcation that could take place close to the equilibrium points were discovered. Numerical simulations were run to validate the model's obtained long-term behavior and comprehend the effects of the model's key parameters in order to confirm our analytical conclusions. It has been observed that the system may have numerous coexistence equilibrium points, leading to bi-stable behavior. The fear rate reduces the multiplicity of the equilibrium point and converts the bi-stable situation into a stable case, which stabilizes the system (1) up to the top particular value.
In this paper, an eco-epidemiological model with media coverage effects is established and studied. An -type of disease in predator is considered. All the properties of the solution of the proposed model are discussed. An application to the stability theory was carried out to investigate the local as well as global stability of the system. The persistence conditions of the model are determined. The occurrence of local bifurcation in the model is studied. Further investigation of the global dynamics of the model is achieved through using a numerical simulation.
An eco-epidemic model is proposed in this paper. It is assumed that there is a stage structure in prey and disease in predator. Existence, uniqueness and bounded-ness of the solution for the system are studied. The existence of each possible steady state points is discussed. The local condition for stability near each steady state point is investigated. Finally, global dynamics of the proposed model is studied numerically.
The food web is a crucial conceptual tool for understanding the dynamics of energy transfer in an ecosystem, as well as the feeding relationships among species within a community. It also reveals species interactions and community structure. As a result, an ecological food web system with two predators competing for prey while experiencing fear was developed and studied. The properties of the solution of the system were determined, and all potential equilibrium points were identified. The dynamic behavior in their immediate surroundings was examined both locally and globally. The system’s persistence demands were calculated, and all conceivable forms of local bifurcations were investigated. With the aid of MATLAB, a numerical simu
... Show MoreIn this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.
This paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of a
... Show MoreIn this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.
In this paper a prey-predator model involving Holling type IV functional response
and intra-specific competition is proposed and analyzed. The local stability analysis of
the system is carried out. The occurrence of a simple Hopf bifurcation is investigated.
The global dynamics of the system is investigated with the help of the Lyapunov
function and poincare-bendixson theorem. Finally, the numerical simulation is used to
study the global dynamical behavior of the system. It is observed that, the system has
either stable point or periodic dynamics.
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
In this work, we have developed a model that describes the relationships between top predators (such as tigers, hyenas, and others), crop raiders (such as baboons, warthogs, and deer), and prey (such as deer) in the coffee forests of southwest Ethiopia. Various potential equilibrium points are identified. Additionally, the model's stability in the vicinity of these equilibrium points is examined. An investigation of the model's Hopf bifurcation is conducted concerning several significant parameters. It is found that prey species may be extinct due to a lower growth rate and consumption by top predators in the absence of human interference in the carrying capacity of prey. It is observed that top predators may be extinct due to human interfe
... Show More