This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. Generally, mono and hybrid fiber specimens showed a significant increase in the splitting tensile strength compared to the plain specimen while they had a slight improvement in compressive strength and modulus of elasticity. The outcomes of the experimental results illustrated that hybrid fibers had the most significant advanced effect on concrete hardened properties. Moreover; the optimization procedure revealed that the best performance in terms of maximum mechanical properties achieved in the mixture reinforced by hybrid fibers[straight + hooked + glass]. The maximum achieved advantage reached (14.18%), (91.97%), and (36.70%) for compressive strength, splitting tensile strength, and modulus of elasticity respectively.
The photo-electrochemical etching (PECE) method has been utilized to create pSi samples on n-type silicon wafers (Si). Using the etching time 12 and 22 min while maintaining the other parameters 10 mA/cm2 current density and HF acid at 75% concentration.. The capacitance and resistance variation were studied as the temperature increased and decreased for prepared samples at frequencies 10 and 20 kHz. Using scanning electron microscopy (SEM), the bore width, depth, and porosity % were validated. The formation of porous silicon was confirmed by x-ray diffraction (XRD) patterns, the crystal size was decreased, and photoluminescence (PL) spectra revealed that the emission peaks were centered at 2q of 28.5619° and 28.7644° for et
... Show MoreIn this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.

This study focuses on the behavior of simply supported perforated prestressed concrete rafters (PPCRs) under single midspan monotonic static loading. The experimental program consisted of testing seven specimens; one solid (control) rafter, and six perforated with quadrilateral openings. The main investigated variables are the number and height of the openings. The test findings indicate that, in comparison to the solid rafter, the presence of quadrilateral openings in the PPCRs led to reducing the load capacity by (4.3-36%) and increase the midspan deflection at ultimate by (14.8-33%). Also, increasing the number of concrete posts between openings resulted in increasing the failure load and decreasing the deflection at all stages o
... Show MoreFatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ) and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content), and (chan
... Show MoreIn this study, two types of mixes were adopted by using two grading of coarse aggregate. The practical side of this study was to produce no-fine aggregate concrete by using crushed clay brick aggregates. The durability of the produced concrete and internal sulfate attack was studied. For durability assessment, it is found that the no-fine concrete made with crushed brick aggregate lost about (15-25) % of its compressive strength after being subjected to 60 cycles of wetting and drying with age 120 days. The curing condition showed that the water curing improved the compressive strength with a rate higher than that when sealed or air dry curing were used. The crushed brick no-fine concrete de
... Show MoreCorrosion inhibiting admixtures are unique among other methods to protect reinforced concrete from corrosion damage. In this study, the effect of furfural on the fresh and hardened properties of concrete mixes of 35 and 45 MPa compressive strengths as well as the corrosion inhibition of furfural was evaluated. Furfural was added at different dosages (1, 2 and 3% by weight of cement) with and without superplasticizer (HRWR). Different electrochemical measurements were performed (Half-cell potential, Tafel plot and linear polarization resistance). Electrochemical measurements confirmed that furfural dramatically reduces the rate of corrosion; the inhibition efficiencies were 62.7 and 63.8 % due to 3% furfural addition to 35 and 45MPa-concr
... Show More