This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. Generally, mono and hybrid fiber specimens showed a significant increase in the splitting tensile strength compared to the plain specimen while they had a slight improvement in compressive strength and modulus of elasticity. The outcomes of the experimental results illustrated that hybrid fibers had the most significant advanced effect on concrete hardened properties. Moreover; the optimization procedure revealed that the best performance in terms of maximum mechanical properties achieved in the mixture reinforced by hybrid fibers[straight + hooked + glass]. The maximum achieved advantage reached (14.18%), (91.97%), and (36.70%) for compressive strength, splitting tensile strength, and modulus of elasticity respectively.
The present study introduces the concept of J-pure submodules as a generalization of pure submodules. We study some of its basic properties and by using this concept we define the class of J-regular modules, where an R-module M is called J-regular module if every submodule of M is J-pure submodule. Many results about this concept are proved
This paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh
... Show Morehis study aimed to investigate the usability of Recycled Concrete Aggregate (RCA) in warm mix asphalt (WMA) as the implementation of sustainable construction technology. Five replacement rates (0%, 25%, 50%, 75%, and 100%) were tested for the coarse fraction of virgin aggregate (VA) with 3 types of RCA: untreated RCA, HL-treated RCA, and HCL-treated RCA. Scanning electron microscopy (SEM) analyses were performed to investigate the surface morphology for both treated and untreated RCA. The optimum asphalt cement content for every substitution rate was determined using Marshall mix design method. Thereafter, asphalt concrete specimens were prepared using the optimum asphalt cement content, followed by the evaluation of their performance prope
... Show MoreA long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacemen
... Show MoreCadmium oxide CdO thin films were prepared by successive ionic layer adsorption and reaction (SILAR) technique at varying number of dippings. The CdO thin films were prepared from a source material of Cadmium acetate and ammonium hydroxide solution deposited on glass substrate at 95℃. The prepared thin films were investigated by X-ray diffraction (XRD), Atomic force microscopy (AFM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and UV-Visible spectrometry. The XRD analysis reveals that the films were polycrystalline with cubic structure having preferential orientation along (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes. While the tests of the scanning electron microscopy and the atomic force mic
... Show MoreThe core objective of this study was to investigate the physicochemical characteristics and fatty acid composition of the oils of sunflower, olive, virgin coconut and ginger oils, as well as the separation of their unsaturated fatty acids. The data indicated a significant variation in physicochemical properties (acid, saponification, ester, and iodine values) among oils. Transesterification process was carried out at a molar ratio of 1:7:0.1 of oil: methanol: KOH. Fatty acid methyl esters of oils were analyzed by infrared (IR) and gas chromatography–mass (GC-MS) spectrometry. Twelve fatty acids were identified, where the major fatty acid of olive oil was found to be oleic acid (89%), whereas those of sunflower and ging
... Show MoreDesigning machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
This study aims to show, the strength of steel beam-concrete slab system without using shear connectors (known as a non-composite action), where the effect of the friction force between the concrete slab and the steel beam has been investigated, by using finite element simulation.
The proposed finite element model has been verified based on comparison with an experimental work. Then, the model was adopted to study the system strength with a different steel beam and concrete slab profile. ABAQUS has been adopted in the preparation of all numerical models for this study.
After validation of the numerical models, a parametric study was conducted, with linear and non-linear Regression analysis. An equation re
... Show More