Preferred Language
Articles
/
1BZ7UIkBVTCNdQwCqIjc
New Approach for Solving Two Dimensional Spaces PDE
...Show More Authors
Abstract<p>In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.</p>
Scopus Crossref
View Publication
Publication Date
Fri Feb 12 2016
Journal Name
International Journal Of Advanced Statistics And Probability
Two fixed point theorems in generalized metric spaces
...Show More Authors

<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>

View Publication
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Computers &amp; Mathematics With Applications
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients
...Show More Authors

View Publication
Crossref (22)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of The College Of Basic Education
Solving Job-Shop Scheduling Problem Using Genetic Algorithm Approach
...Show More Authors

Publication Date
Mon Jul 01 2019
Journal Name
Applied Mathematical Modelling
Potential flow of fluid from an elevated, two-dimensional source
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Mon May 04 2009
Journal Name
Journal Of Al-nahrain University
Solution of two-dimensional fractional order volterra integro-differential equations
...Show More Authors

In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.

View Publication Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
FPGA Realization of Two-Dimensional Wavelet and Wavelet Packet Transform
...Show More Authors

 

The Field Programmable Gate Array (FPGA) approach is the most recent category, which takes the place in the implementation of most of the Digital Signal Processing (DSP) applications. It had proved the capability to handle such problems and supports all the necessary needs like scalability, speed, size, cost, and efficiency.

In this paper a new proposed circuit design is implemented for the evaluation of the coefficients of the two-dimensional Wavelet Transform (WT) and Wavelet Packet Transform (WPT) using FPGA is provided.

In this implementation the evaluations of the WT & WPT coefficients are depending upon filter tree decomposition using the 2-D discrete convolution algorithm. This implementation w

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Biomathematics
A non-conventional hybrid numerical approach with multi-dimensional random sampling for cocaine abuse in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
New Normality on Generalized Topological Spaces
...Show More Authors
Abstract<p>A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.</p>
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sat Feb 01 2025
Journal Name
Algorithms
Three-Dimensional Object Recognition Using Orthogonal Polynomials: An Embedded Kernel Approach
...Show More Authors

Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (11)
Crossref