A novel series of mixed-ligand complexes of the type, [ML1(L2)3]Clx [M= Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiff base (HL1) as main ligand, nicotinamide (L2) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR,1H-NMR,13C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiff base ligand, HL1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxygen atoms, whereas the secondary ligand L2 (nicotinamide, Nam) coordinated through pyridine nitrogen atoms. The synthesized complexes exhibited significant antimicrobial activity when evaluated against P. pseudomonas, E. coli, S. aureus and B. subtilis microbes. The DFT calculations were also carried out to ascertain the bonding insights into the structure. In addition, molecular docking analysis was performed carried out to know the interactions between complexes and their probable binding sites in penicillin binding protein (PBP2). Moreover, drug-likeness and toxicity of the compounds were also performed to predict the suitability of the complexes as drugs.
Derivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with app
... Show MoreDerivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with
... Show MoreComplexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4 tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3)The prepared
The Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl)amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones (5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones was secerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds (5a) showed mild antibacteri
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl) amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones(5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones wassecerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds(5a) showed mild antibacterial activit
... Show MoreA new ligand complexes have been synthesis from reaction of metal ions of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with schiff base LH. 5-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-2-phenyl-2,4-dihydro-pyrazol-3-one, this ligand was characterized by Fourier transform infrared (FTIR), UV-vis, 1H, 13CNMR, and mass spectra. All complexes were characterized by techniques micro analysis C.H.N, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements and magnetic susceptibility. The ligand acts as bidentate, coordination through nitrogen atom from azomethin group and deprotonated phenolic oxygen atom. The spectroscopic and analytical measurements showed that
... Show More