This study investigates asset returns within the Iraq Stock Exchange by employing both the Fama-MacBeth regression model and the Fama-French three-factor model. The research involves the estimation of cross-sectional regressions wherein model parameters are subject to temporal variation, and the independent variables function as proxies. The dataset comprises information from the first quarter of 2010 to the first quarter of 2024, encompassing 22 publicly listed companies across six industrial sectors. The study explores methodological advancements through the application of the Single Index Model (SIM) and Kernel Weighted Regression (KWR) in both time series and cross-sectional analyses. The SIM outperformed the KWR approach in estimating time-varying beta coefficients, yielding a mean Root Mean Squared Error (RMSE) of 0.14316. Furthermore, the integrated KWR-SIM methodology achieved the lowest Adjusted Root Mean Squared Error (ARMSE) value of 0.08152 when modelling the association between risk factors and asset returns within the cross-sectional analytical framework. Statistical tests for significance produced heterogeneous responses of the returns on assets in the Iraqi financial market to the Fama-French posited economic variables. The estimated coefficients for the betas showed significant oscillations for all assets, confirming changes in economic conditions. The results add to our knowledge of the risk-reward relationship in the context of emerging markets and provide methodological insights into financial asset pricing. The evidence indicates that the KWR-SIM method has better capabilities for model fitting
Abstract
We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-squar
... Show MoreTransforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show More