Cryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of security to Triple Data Encryption Standard algorithm using Nth Degree Truncated Polynomial Ring Unit algorithm. This aim achieved by adding two new key functions, the first one is Enckey(), and the second one is Deckey() for encryption and decryption key of Triple Data Encryption Standard to make this algorithm more stronger. The obtained results of this paper also have good resistance against brute-force attack which makes the system more effective by applying Nth Degree Truncated Polynomial Ring Unit algorithm to encrypt and decrypt key of Triple Data Encryption Standard. Also, these modifications enhance the degree of complexity, increase key search space, and make the ciphered message difficult to be cracked by the attacker.
In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of specific time points (m)،since the frequent measurements within the subjects are almost connected an
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThe research aims to evaluate the selected projects from the water Department of Baghdad, according to a standard for total quality management and to achieve this goal , adopted the case study method to get to know how close or turn away those projects in the management of Standard Malcolm Baldrige Award for Excellence in Quality Management its comprehensive one scales the world's most famous in this area , in order to draw a general framework to evaluate how project management can benefit from this approach to modern management , input from the entrances of the comprehensive management reform and development.
Be standard Malcolm Baldrige Award of several elements: - leadership , strategic planning , foc
... Show MoreFinding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show MoreIn this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreThree-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show More