Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreThe research aims mainly to the role of the statement style costs on the basis of activity based on performance (PFABC) to reduce production cost and improve the competitive advantage of economic units and industrial under the modern business environment dominated by a lot of developments and changes rapidly, which necessitates taking them and criticize them to ensure survival and continuity. The research problem is the inability of traditional cost methods of providing useful information to the departments of units to take many administrative decisions, particularly decisions related to the product and calculating the costs of the quality of the sound and the availability of the need and the ability to replace methods capa
... Show MoreBackground: Kinesiologists, Physical Anthropologists, and Anatomists have all long been captivated by the structure and development of the superficial forearm flexor, the Palmaris longus.
Objective: To study the effect of Palmaris Longus on certain handwriting skills.
Subjects and Methods: Three Palmaris Longus occurrence tests were conducted on 200 students (100 males and 100 females) affiliated to Colleges of Medicine of Baghdad University then the participants were tested for certain handwriting skills to correlate the presence of Palmaris Longus in the dominant side with handwriting.
Results: 89% of all subject
... Show MoreThe study aimed to design a test of pre-writing skills for public kindergartens in Baghdad city. The test consisted of (25) items applied on a sample of (150) kindergarteners to identify these skills as well as to identify the significant difference between male and female children and if there is a difference between pre-school children and kindergarteners. The results showed the presence of pre-writing skills with a high degree in kindergarten children. The differences were clear in these skills between male and female children and those in pre-school than those in kindergartens. The researcher suggested a number of recommendations and proposals.