The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
This paper presents a hybrid software copy protection scheme, the scheme is applied to
prevent illegal copying of software by produce a license key which is unique and easy to
generate. This work employs the uniqueness of identification of hard disk in personal
computer which can get by software to create a license key after treated with SHA-1 one way
hash function. Two mean measures are used to evaluate the proposed method, complexity
and processing time, SHA-1 can insure the high complexity to deny the hackers for produce
unauthorized copies, many experiments have been executed using different sizes of software
to calculate the consuming time. The measures show high complexity and short execution
time for propos
Gelatin a promising biomaterial which is useful and interesting natural polymer which offer possibilities of chemical modification through grafted copolymerization with an saturated acid anhydride such as methyl nadic anhydride formatted gelatin –g- methyl nadic anhydride copolymer (A1), then modified to its corresponding polymer (A2) by substituted salbutamol as useful derivative as biomaterial .the prepared drug biopolymer was characterization by FTIR spectroscopy and thermal analysis was studied controlled drug release was measured in different buffer solution at 37C0 .
The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show MoreAbstract :
The study aims at building a mathematical model for the aggregate production planning for Baghdad soft drinks company. The study is based on a set of aggregate planning strategies (Control of working hours, storage level control strategy) for the purpose of exploiting the resources and productive capacities available in an optimal manner and minimizing production costs by using (Matlab) program. The most important finding of the research is the importance of exploiting during the available time of production capacity. In the months when the demand is less than the production capacity available for investment. In the subsequent months when the demand exceeds the available energy and to minimize the use of overti
... Show MoreBackground: Blastocystis spp. distributes world widely and the genus Blastocystis include many subtypes that are isolated from human intestinal tract. It is considered the most common parasite detected in human being.
Objectives: To evaluate the incidence of Blastocystis spp. among leukemic children, to find out its association with the presence of symptoms (diarrhea and abdominal pain), and to assess the efficacy of different staining methods in detection of Blastocystis spp.
Type of the study: cross-sectional study.
Method: 103 children were enrolled in this study, 53 leukemic patients and 50 healthy con
... Show MoreSituational regret and its relation to the vitality of conscience among university students The research seeks to identify situational regret and its relation to the vitality of conscience among university students, identify the significant differences in regard with students’ gender, and identify if there is a correlation between situational regret and the vitality of conscience. To do this, two scales were adopted; one to measure situational regret consisted of (31) items, which was designed by (Al-badrani, 2006), besides, costa and macrys’ (1992) scale that translated in Arabic language by (Al-qaisy, 2013). It composed of (35) items. Total of (120) male and female students were collected from three-different colleges (science, art
... Show MoreMaximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty
... Show MoreBackground: For many decades, the ECG was the
workhorse of non-invasive cardiac test and today although
other techniques provide more details about the structural
anomalies in congenital heart diseases, ECG is likely to be
part of clinical evaluation of patients with such diseases
because it is inexpensive, easy to perform and in certain
situations may be both sensitive and specific.
Objective: this study carried out to identify the pattern of
ECG study in patients with TOF.
Methods: this is a retrospective study of 200 patients
with TOF, referred to Ibn Al-Bitar cardiac center from
April 1993 to May 1999. The diagnosis of TOF established
by echocrdiographic, catheterization and angiographic
study.