Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.
The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreFerritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreThis deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
DBN Rashid, Rimak International Journal of Humanities and Social Sciences, 2020
This paper studies the demonstratives as deictic expressions in Standard Arabic and English by outlining their phonological, syntactic and semantic properties in the two languages. On the basis of the outcome of this outline, a contrastive study of the linguistic properties of this group of deictic expressions in the two languages is conducted next. The aim is to find out what generalizations could be made from the results of this contrastive study.
In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show More