A geological model was built for the Sadi reservoir, located at the Halfaya oil field. It is regarded as one of the most significant oilfields in Iraq. The study includes several steps, the most essential of which was importing well logs from six oil wells to the Interactive Petrophysics software for conducting interpretation and analysis to calculate the petrophysical properties such as permeability, porosity, shale volume, water saturation, and NTG and then importing maps and the well tops to the Petrel software to build the 3D-Geological model and to calculate the value of the original oil in place. Three geological surfaces were produced for all Sadi units based on well-top data and the top Sadi structural map. The reservoir has been divided into 85 sublayers in the vertical direction and 170*143 grid cells in the x-y direction, totalling 2,066,350 grid cells. The Sequential Gaussian Simulation technique is used to fill 3D grid cells with property values in locations far from wells after upscaling the well log data, then distributed across all reservoir zones. The standard original oil in place has been calculated, uncertainty evaluation was used to obtain more accurate results. Model Risk Analysis employs Monte Carlo Simulation to generate the pessimistic, most likely, and optimistic reserve values (P90, P50, and P10). The uncertainty was affected by the oil formation volume factor, oil depth, petrophysical model (porosity, water saturation, and NTG), and reservoir geometric structure (horizons and zones).
Biodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–
... Show MoreEstablishing coverage of the target sensing field and extending the network’s lifetime, together known as Coverage-lifetime is the key issue in wireless sensor networks (WSNs). Recent studies realize the important role of nature-inspired algorithms in handling coverage-lifetime problem with different optimization aspects. One of the main formulations is to define coverage-lifetime problem as a disjoint set covers problem. In this paper, we propose an evolutionary algorithm for solving coverage-lifetime problem as a disjoint set covers function. The main interest in this paper is to reflect both models of sensing: Boolean and probabilistic. Moreover, a heuristic operator is proposed as a local refinement operator to improve the quality
... Show MoreIn this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.
E-mail is an efficient and reliable data exchange service. Spams are undesired e-mail messages which are randomly sent in bulk usually for commercial aims. Obfuscated image spamming is one of the new tricks to bypass text-based and Optical Character Recognition (OCR)-based spam filters. Image spam detection based on image visual features has the advantage of efficiency in terms of reducing the computational cost and improving the performance. In this paper, an image spam detection schema is presented. Suitable image processing techniques were used to capture the image features that can differentiate spam images from non-spam ones. Weighted k-nearest neighbor, which is a simple, yet powerful, machine learning algorithm, was used as a clas
... Show MoreIndustrial effluents loaded with heavy metals are a cause of hazards to the humans and other forms of life. Conventional approaches, such as electroplating, ion exchange, and membrane processes, are used for removal of copper, cadmium, and lead and are often cost prohibitive with low efficiency at low metal ion concentration. Biosorption can be considered as an option which has been proven as more efficient and economical for removing the mentioned metal ions. Biosorbents used are fungi, yeasts, oil palm shells, coir pith carbon, peanut husks, and olive pulp. Recently, low cost and natural products have also been researched as biosorbent. This paper presents an attempt of the potential use of Iraqi date pits and Al-Khriet (i.e. substances l
... Show MoreThe main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti
Recently personal recommender system has spread fast, because of its role in helping users to make their decision. Location-based recommender systems are one of these systems. These systems are working by sensing the location of the person and suggest the best services to him in his area. Unfortunately, these systems that depend on explicit user rating suffering from cold start and sparsity problems. The proposed system depends on the current user position to recommend a hotel to him, and on reviews analysis. The hybrid sentiment analyzer consists of supervised sentiment analyzer and the second stage is lexicon sentiment analyzer. This system has a contribute over the sentiment analyzer by extracting the aspects that users have been ment
... Show Moreهدفت الدراسة الى التعرف على مستوى استخدام إدارة المعرفة و تكنولوجيا المعلومات لدى القيادات الإدارية تُعدّ لعبة الإسكواش من الألعاب الفردية، وواحدة من ألعاب المضرب، والتي تمتاز بالسرعة والحركة الدائمة في داخل القاعة، ولعل أهم ما يميز هذه اللعبة المتعة التي يشعر بها اللاعبون الممارسون لها، لأنها تجبر ممارسيها على الحركة المستمرة عن طريق تبادل لعب الكرة، وتتميز بالتحدي المباشر، وتتطلب اليقظة والحرص وال
... Show MoreIn multivariate survival analysis, estimating the multivariate distribution functions and then measuring the association between survival times are of great interest. Copula functions, such as Archimedean Copulas, are commonly used to estimate the unknown bivariate distributions based on known marginal functions. In this paper the feasibility of using the idea of local dependence to identify the most efficient copula model, which is used to construct a bivariate Weibull distribution for bivariate Survival times, among some Archimedean copulas is explored. Furthermore, to evaluate the efficiency of the proposed procedure, a simulation study is implemented. It is shown that this approach is useful for practical situations and applicable fo
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show More