Recently personal recommender system has spread fast, because of its role in helping users to make their decision. Location-based recommender systems are one of these systems. These systems are working by sensing the location of the person and suggest the best services to him in his area. Unfortunately, these systems that depend on explicit user rating suffering from cold start and sparsity problems. The proposed system depends on the current user position to recommend a hotel to him, and on reviews analysis. The hybrid sentiment analyzer consists of supervised sentiment analyzer and the second stage is lexicon sentiment analyzer. This system has a contribute over the sentiment analyzer by extracting the aspects that users have been mentioned in their reviews like (cleanness, service, etc.) by using accurate parsing system built on latent semantic analysis results. The accuracy measurements of the proposed sentiment analyzer were perfect.
The expansion of web applications like e-commerce and other services yields an exponential increase in offers and choices in the web. From these needs, the recommender system applications have arisen. This research proposed a recommender system that uses user's reviews as implicit feedback to extract user preferences from their reviews to enhance personalization in addition to the explicit ratings. Diversity also improved by using k-furthest neighbor algorithm upon user's clusters. The system tested using Douban movie standard dataset from Kaggle, and show good performance.
This work includes design, implementation and testing of a microcontroller – based spectrum analyzer system. Both hardware and software structures are built to verify the main functions that are required by such system. Their design utilizes the permissible and available tools to achieve the main functions of the system in such a way to be modularly permitting any adaptation for a specific changing in the application environment. The analysis technique, mainly, depends on the Fourier analysis based methods of spectral analysis with the necessary required preconditioning processes. The software required for waveform analysis has been prepared. The spectrum of the waveform has been displayed, and the instrument accuracy has been checked.
... Show MoreNowadays, it is convenient for us to use a search engine to get our needed information. But sometimes it will misunderstand the information because of the different media reports. The Recommender System (RS) is popular to use for every business since it can provide information for users that will attract more revenues for companies. But also, sometimes the system will recommend unneeded information for users. Because of this, this paper provided an architecture of a recommender system that could base on user-oriented preference. This system is called UOP-RS. To make the UOP-RS significantly, this paper focused on movie theatre information and collect the movie database from the IMDb website that provides informatio
... Show MoreThis paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene
... Show MorePeople’s ability to quickly convey their thoughts, or opinions, on various services or items has improved as Web 2.0 has evolved. This is to look at the public perceptions expressed in the reviews. Aspect-based sentiment analysis (ABSA) deemed to receive a set of texts (e.g., product reviews or online reviews) and identify the opinion-target (aspect) within each review. Contemporary aspect-based sentiment analysis systems, like the aspect categorization, rely predominantly on lexicon-based, or manually labelled seeds that is being incorporated into the topic models. And using either handcrafted rules or pre-labelled clues for performing implicit aspect detection. These constraints are restricted to a particular domain or language which is
... Show MoreSentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.
In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include
... Show MoreThe great progress in information and communication technology has led to a huge increase in data available. Traditional systems can't keep up with this growth and can't handle this huge amount of data. Recommendation systems are one of the most important areas of research right now because they help people make decisions and find what they want among all this data. This study looked at the research trends published in Google Scholar within the period 2018-2022 related to recommending, reviewing, analysing, and comparing ebooks research papers. At first, the research papers were collected and classified based on the recommendation model used, the year of publication, and then they were compared in terms of techniques, datasets u
... Show MoreTwitter popularity has increasingly grown in the last few years, influencing life’s social, political, and business aspects. People would leave their tweets on social media about an event, and simultaneously inquire to see other people's experiences and whether they had a positive/negative opinion about that event. Sentiment Analysis can be used to obtain this categorization. Product reviews, events, and other topics from all users that comprise unstructured text comments are gathered and categorized as good, harmful, or neutral using sentiment analysis. Such issues are called polarity classifications. This study aims to use Twitter data about OK cuisine reviews obtained from the Amazon website and compare the effectiveness
... Show MoreSentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina
... Show More