Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices using the k-Nearest Neighbors (KNN), Tree, Support Vector Machine (SVM), and Artificial Neural Network (ANN) algorithms. The results showed an inverse relationship between the storage period and the hardness of the apple slices, with the average hardness values gradually decreasing from 4.33 (day 1) to 3.37 (day 5). Treatment with atmospheric plasma at a pressure of 5 atm and an immersion time of 3 min gave the best results for maintaining the hardness of the slices during the storage period, recording values of 4.85 (first day) and 3.68 (fifth day), outperforming other treatments. The average improvement rate was 23.09% over five consecutive days. Regarding the CNN algorithms, the ANN algorithm achieved the highest classification accuracy of 97%, while the Tree algorithm achieved the lowest accuracy of 88.7%. The KNN and SVM algorithms achieved classification accuracies of 94.7% and 95.1%, respectively. The study demonstrated the possibility of using a CNN to classify apple slices based on the degree of hardness. Furthermore, the application of atmospheric plasma at 5 atmospheres with a 3-min immersion improves the firmness of the apple slices by inhibiting degradative enzymes while preserving the cellular structure and tissue quality.
Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.
Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.
Abstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreKE Sharquie, HR Al-Hamami, IK Sharquie, AA Noaimi, HM Al-Karawy, Iraqi Postgraduate Medical Journal, 2013
Background: War represents a major human crisis; it destroys communities and results in ingrained consequences for public health and well-being
Objective: We set this study to shed light on the public health status in Iraq after the successive wars, sanctions, sectarian conflicts, and terrorism, in light of certain health indicators.
Design: The primary source of data for this analysis comes from the Iraqi Ministry of Health, and The World Health Organization disease surveillance.
Results: Most of the morbidity indicators are high, even those that are relatively declining recently, are still higher than those repor
... Show More
In this paper, the using of Non-Homogenous Poisson Processes, with one of the scientific and practical means in the Operations Research had been carried out, which is the Queuing Theory, as those operations are affected by time in their conduct by one function which has a cyclic behavior, called the (Sinusoidal Function). (Mt / M / S) The model was chosen, and it is Single Queue Length with multiple service Channels, and using the estimating scales (QLs, HOL, HOLr) was carried out in considering the delay occurring to the customer before his entrance to the service, with the comparison of the best of them in the cases of the overload.
Through the experiments
... Show MoreIntegrating Renewable Energy (RE) into Distribution Power Networks (DPNs) is a choice for efficient and sustainable electricity. Controlling the power factor of these sources is one of the techniques employed to manage the power loss of the grid. Capacitor banks have been employed to control phantom power, improving voltage and reducing power losses for several decades. The voltage sag and the significant power losses in the Iraqi DPN make it good evidence to be a case study proving the efficiency enhancement by adjusting the RE power factor. Therefore, this paper studies a part of the Iraqi network in a windy and sunny region, the Badra-Zurbatya-11 kV feeder, in the Wasit governorate. A substation of hybrid RE sources is connected to this
... Show MoreThe study consisted in the development and use of a practical method to detect and
monitor, analyze and produce maps of changes in land use and land cover in the district of
Mahmudiya in Baghdad during the period 1990-2007 using the applications of remote sensing
techniques and with the assisstant of geographic information systems (GIS),as a valuable
contribution to land degradation studies.
This study is based maiuly on the processing on two subsets of landsat5 TM images picked up
in August 1990 and 2007 respectively in order to facilitate comparision and were thengeometrically and radiometrcally calibrated ,to used for digital classification purposes using
maximum liklihoods classification or six spectral bands of
Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori
Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show More