In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreThis paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type
... Show MoreSome experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.
The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
We have provided in this research model multi assignment with fuzzy function goal has been to build programming model is correct Integer Programming fogging after removing the case from the objective function data and convert it to real data .Pascal triangular graded mean using Pascal way to the center of the triangular.
The data processing to get rid of the case fogging which is surrounded by using an Excel 2007 either model multi assignment has been used program LNDO to reach the optimal solution, which represents less than what can be from time to accomplish a number of tasks by the number of employees on the specific amount of the Internet, also included a search on some of the
... Show MoreThe estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify t
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreMany numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.