Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Borderline-SMOTE + Imbalanced Ratio(IR), Adaptive Synthetic Sampling (ADASYN) +IR) Algorithm, where the work these techniques are generate the synthetic samples for the minority class to achieve balance between minority and majority classes and then calculate the IR between classes of minority and majority. Experimental results show ImprovedSMOTE algorithm outperform the Borderline-SMOTE + IR and ADASYN + IR algorithms because it achieves a high balance between minority and majority classes.
HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
In recent years, Elliptic Curve Cryptography (ECC) has attracted the attention of
researchers and product developers due to its robust mathematical structure and
highest security compared to other existing algorithms like RSA. It is found to give
an increased security compared to RSA for the same key-size or same security as
RSA with less key size. In this paper a new approach is proposed for encrypting
digital image using the arithmetic of elliptic curve algebra. The proposed approach
produced a new mask for encrypt the digital image by use a new convolution
processes based on ECC algebra operations and work as symmetric cryptographic
system instead of asymmetric system. A new approach combined both compression
Image content verification is to confirm the validity of the images, i.e. . To test if the image has experienced any alteration since it was made. Computerized watermarking has turned into a promising procedure for image content verification in light of its exceptional execution and capacity of altering identification.
In this study, a new scheme for image verification reliant on two dimensional chaotic maps and Discrete Wavelet Transform (DWT) is introduced. Arnold transforms is first applied to Host image (H) for scrambling as a pretreatment stage, then the scrambled host image is partitioned into sub-blocks of size 2×2 in which a 2D DWT is utilized on ea
... Show MoreEstimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre
... Show MoreThe use of online social network (OSN) has become essential to humans' lives whether for entertainment, business or shopping. This increasing use of OSN motivates designing and implementing special systems that use OSN users' data to provide better user experience using machine learning and data mining algorithms and techniques. One system that is used extensively for this purpose is friend recommendation system (FRS) in which it recommends users to other users in professional or entertaining online social networks.
For this purpose, this study proposes a novel friend recommendation system, namely Hybrid Friend Recommendation (FR) model. The Hybrid model applies dual-stage methodology on unlabeled data of 1241 users collected fro
... Show MoreLeishmaniasis is one of the important parasitic diseases, affecting mainly low social class people indeveloping countries, and is more prevalent and endemic in the tropical and subtropical regions of old worldand new world. Despite ofbroad distribution in Iraq,little known about the geneticcharacteristics of thecausative agents. So this study was aimed to evaluate the genetic varietyoftwo IraqiLeishmaniatropicaisolatesbased on heat shock protein gene sequence 70 (HSP70) in comparison with universal isolates recordedsequences data. After amplification and sequencing of HSP70 gene,the obtainedresults were alignment alongwith homologous Leishmania sequences retrieved from NCBI by using BLAST. The analysis results showedpresence of particular g
... Show MoreComputer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t
... Show More