Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Borderline-SMOTE + Imbalanced Ratio(IR), Adaptive Synthetic Sampling (ADASYN) +IR) Algorithm, where the work these techniques are generate the synthetic samples for the minority class to achieve balance between minority and majority classes and then calculate the IR between classes of minority and majority. Experimental results show ImprovedSMOTE algorithm outperform the Borderline-SMOTE + IR and ADASYN + IR algorithms because it achieves a high balance between minority and majority classes.
The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreHigh vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreThe research aims to determine the required rate of return according to the Fama and French five-factor model, after strengthening it by adding the indebtedness factor to build the Fama and French six-factor model FF6M-DLE. The effect of the indebtedness factor on the company's profitability and the real value of the ordinary shares calculated according to the (equivalent ascertainment) model and its suitability with the company's situation, and an analysis of the fluctuation between the market value and the real value of the ordinary stocks.
Grapes and grape seeds are important samples employed for environmental medical studies . The air of this work was to identify and concentration calculation of the elements in grapes fruit and thier seeds by using X-Ray fluoresces technique (XRF) . Samples were collected from Abo Ghraib of Baghdad city ,the grape seeds were obtained from those samples . Both samples were taken under experimental procedure to obtain the sample which were ready for analysis . The samples were then submitted to experimental conditions using a radiation source and then samples were applied for counting analysis shows the elements Na , Mg , Al , Si , P , S , Cl , K , Ca , and Sr as major components of the samples. Fe , Sr , I , Ba and V were
... Show MoreThe aim of this study is to screen the phytochemicals found in Populus euphratica leaves since this type of trees are used traditionally by many villagers as treatment for eczema and other skin disease and also this plant is poorly investigated for their phytochemicals especially in Iraq. Phytochemical screening of the extracts obtained from the n-hexane and chloroform fraction of leaves of Populus euphratica was done by Thin-layer chromatography and various spraying reagents to test if alkaloids, sterols and other compounds are present. UPLC-electrospray ionization –tandem mass spectroscopy along with GC-MS and HPTLC are used to identify the phytochemicals present in the plant leaves.UPLC-ESI-MS/MS method 20 compound
... Show More