A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others in most simulation scenarios according to the integrated mean square error and integrated classification error
Web application protection lies on two levels: the first is the responsibility of the server management, and the second is the responsibility of the programmer of the site (this is the scope of the research). This research suggests developing a secure web application site based on three-tier architecture (client, server, and database). The security of this system described as follows: using multilevel access by authorization, which means allowing access to pages depending on authorized level; password encrypted using Message Digest Five (MD5) and salt. Secure Socket Layer (SSL) protocol authentication used. Writing PHP code according to set of rules to hide source code to ensure that it cannot be stolen, verification of input before it is s
... Show MoreInferential methods of statistical distributions have reached a high level of interest in recent years. However, in real life, data can follow more than one distribution, and then mixture models must be fitted to such data. One of which is a finite mixture of Rayleigh distribution that is widely used in modelling lifetime data in many fields, such as medicine, agriculture and engineering. In this paper, we proposed a new Bayesian frameworks by assuming conjugate priors for the square of the component parameters. We used this prior distribution in the classical Bayesian, Metropolis-hasting (MH) and Gibbs sampler methods. The performance of these techniques were assessed by conducting data which was generated from two and three-component mixt
... Show MoreThe non static chain is always the problem of static analysis so that explained some of theoretical work, the properties of statistical regression analysis to lose when using strings in statistic and gives the slope of an imaginary relation under consideration. chain is not static can become static by adding variable time to the multivariate analysis the factors to remove the general trend as well as variable placebo seasons to remove the effect of seasonal .convert the data to form exponential or logarithmic , in addition to using the difference repeated d is said in this case it integrated class d. Where the research contained in the theoretical side in parts in the first part the research methodology ha
... Show More
