Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.
In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreIn this research, an enhancement in lubricating, rheological, and filtration properties of unweighted water-based mud is fundamentally investigated using XC polymer NPs with 0.2gm, 0.5gm, 1gm, 2gm, and 4gm concentrations. Bentonite, that had been used in the preparation of unweighted water-based mud, was characterized using XRF-1800 Sequential X-ray Fluorescence Spectrometer, XRD-6100/7000 X-ray Diffractometer, and Malvern Mastersizer 2000 particle size analyzer, respectively. Lubricating, rheology and filtration properties of unweighted water-based mud were measured at room temperature (35°C) using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. XC Polymer N
... Show MoreOn the basis of known coumarin-based prodrug system, a novel coumarin-based mutual prodrug of 5-fluorouracil and dichloroacetic acid was designed, synthesized and evaluated as a promising oral chemotherapeutic agent basing on in vitro stability study in HCl buffer (pH 1.2) and in phosphate buffer (pH 7.4), as well as in vitro release study in human serum. The chemical structure of prodrug was confirmed by analyzing its FTIR, 1H NMR, 13C NMR and MS-ESI spectra. The results of in vitro kinetic study indicated that the prodrug was significantly stable in HCl and in phosphate buffers, and was hydrolyzed in human serum followed pseudo first order kinetics.
Keywords: Coumarin-bas
... Show MoreIn this paper, we give new results and proofs that include the notion of norm attainment set of bounded linear operators on a smooth Banach spaces and using these results to characterize a bounded linear operators on smooth Banach spaces that preserve of approximate - -orthogonality. Noting that this work takes brief sidetrack in terms of approximate - -orthogonality relations characterizations of a smooth Banach spaces.