Ternary polymer blend of chitosan/poly vinyl alcohol/ poly vinyl pyrrolidone was prepared by solution castingmethod, nanocomposite was prepared by sonication method with nano Ag and Zn. All prepared compounds have been characterizedby FT-IR, SEM, DSC, as well as Biological activity. Antimicrobialactivity related to prepared blendsand Nanocomposites againstsix types of bacteria namely, Staphylococcus aureas, E. faecalis, S.typhi, P. aeruginosa, Bacillus subtilis, Escherichia coli andC. albicans fungal were examined and evaluated. The results reveal that the prepared polymer blends and nanocompositeshavegood antimicrobial activity against all kinds of microbials.
Removing Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
Self-compacting concrete (SCC) has undergone a remarkable evolution recently based on the results from several studies that have indicated the chain of benefits SCC provides. Micro and nano materials used as mineral additives in SCC offer several high-performance properties, and this research studies the effects of micro silica (MS) (10%, used as a reference) and colloidal nano-silica (CNS) (2.5%, 5%, 7.5%, and 10%) on the fresh and hardened properties of SCC. All mixtures were estimated using flow, L-box, and V-funnel tests to examine workability and compressive strength, modulus of elasticity and tensile strength as hardened properties. The use of CNS increased the overall compressi
A new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.
A series of new compounds including p-bromo methyl pheno acetate [2]. N-( aminocarbonyl)–p-bromo pheno acetamide [3] , N-( aminothioyl) -p-bromo phenoacetyl amide [4], N-[4-(p-di phenyl)-1,3-oxazol-2-yl]-p-bromopheno acetamide [5],N-[4-p-di phenyl]-1,3-thiazol-2-yl-p-bromo phenoacet amide [6], p-bromopheno acetic acid hydrazide [7] , 1-N-(p-bromo pheno acetyl)-1,2-dihydro-pyridazin-3,6- dione [8], 1-N-(p-bromo pheno acetyl)-1,2-dihydro-phthalazin-3,8- dione[ 9], 1-(p-bromo pheno acetyl)-3-methylpyrazol-5-one [10] and 1-(p-bromo phenol acetyl)- 3,5-dimethyl pyrazole [11] have been synthesized. The prepared compounds were characterized by m.p.,FT-IR and 1H-NMR spectroscopy. Also ,the biological activity was evaluated .
Four metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes.
This work includes synthesis of new six membered heterocyclic rings with effective amino group using the reaction of benzylideneacetophenone (chalcone) (1) with thiourea or urea in alcoholic basic medium to form: 1,3-thiazen-2-amine (2), and 1,3-oxazin-2-amine (8) respectively. The diazotization reaction was carried out with sodium nitrite in presence of hydrochloric acid to form diazonium salts which suffered coupling reaction with naphthols and phenols in the presence of sodium hydroxide to form colored azo dyes (4-7, and 10-13). o-methylation reaction of compounds (7) and (10) yielded : 1,3-thiazin -2-yl-diazenyl (14), and 1,3-oxazin-2-yl-diazenyl (15) respectively.The new compounds were characterized using vario
... Show MoreFour metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes. Keywords: Mixed ligand complexes, spectral studies, 2-aminophenol, tributylphosphine.
The organic compound imidazole has the chemical formula C3N2H4. Numerous significant biological compounds contain imidazole. The amino acid histidine is the most prevalent. The substituted imidazole derivatives have great potential for treating a variety of systemic fungi infections. Thiourea is an organosulfur compound with the formula SC(NH2)2. It is a reagent in organic synthesis. In this paper, some new imidazole and thiourea derivatives are synthesized, characterized, and studied for their biological activity. These new compounds were synthesized from the starting material terephthalic acid, which was transformed to corresponding ester [I] by the refluxing of diacid with methanol in the presence of H2SO4 as a catalyst, compound [I] con
... Show More