Density functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were calculated. Based on previous researches, it is understood that the adsorption of dipeptides on the aforementioned moieties has a chemical nature. The protonation of configuration leads to an increase in the amount of energy of adsorption on the surface of metal among the inhibitors. Theoretically speaking, it is more likely for peptides to adsorb on the surface of iron, and this fact reveals that these moieties are highly effective in terms of inhibitive applications. According to the obtained findings, small peptides can be used as favorable “green” corrosion inhibitors.
Density Functional Theory (DFT) at the B3LYP/ 6-311G basis set level and
semiemperical methods (PM3, AM1, and MINDO/3) were performed on six new
substituted Schiff bases derivatives of INHC (N-(3-(phenylidene-allylidene)
isonicotinohydrazide) using Gaussian-03 program. The calculated quantum chemical
parameters correlated to the inhibition efficiency were studied and discussed at their
equilibrium geometry and their correct symmetry (Cs). Comparisons of the order of
inhibition efficiency of the Schiff bases derivatives, and local electrophilic and
nucleophilic reactivity have analyzed. Some physical properties also were studied
such as heat of formation, total energy and dipole moment...etc. Also vibration
freq
A newly derivative of oxazolidin-5- one namely [2-(2-biphenyl-4-yl-imidazo [1,2-a] pyridine-3-yl)-3-(4-nitro-phenyl)-oxazolidin-5-one (BIPNO5)] was examined as an corrosion inhibitor for carbon steel surface. Quantum mechanical method of Density Functional Theory (DFT) with (B3LYP (6-311++G (2d, 2p)) level of theory was used to calculate the minimize structure, physical properties and inhibition chemical parameters, in vacuum and two solvents (DMSO and H2O), all at equilibrium geometry. The results indicated that the new derivative could adsorb on the surface of carbon steel through the heteroatom, showing that the new inhibitor has good corrosion inhibition performance.
In this work, the copper metal was treated using Nd:YAG laser with energy 1Joul to enhance corrosion resistance and improve surface properties. The copper metal has many applications in industry as well as water, oil and gas pipes. The same conditions, (laser power density, scan speed, distance between paths, medium gas-air) were applied in the laser surface treatment, After laser treatment, the samples microstructures were investigated using optical microscope (OM) to examine micro structural changes due to laser irradiation. Specimen surfaces were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), macro hardness, and corrosion test before and after laser treatment to
... Show MoreIn this work, we presented a study of the structural formula for a new series of complexes with Ag(I), Cu(II), Zn(II), and Cd(II) derived from the guanine azo dye ligand 2-amino-8-((3-hydroxyphenyl)diazinyl)-1,7-dihydro-6H-purin-6-one (HAG), which is investigated using various physicochemical analyses, spectroscopic techniques (FT-IR, U.V-VIS, and 1H NMR), thermogravimetric analysis (TGA). In addition, elemental analyses, magnetic susceptibility, and molar conductance measurements were all stabilized. As well as the mole ratio, stability constant, and Gibbs free energy were studied for all complexes, where they showed high stability and spontaneous synthesis. The Cu(II) complex was suggested to have octahedral stere
... Show MoreBackground: Diabetes mellitus is a common health problem of the world. Iron may be a part of the cause of the disease and its Complications
Objectives: This study was designed to determine the relationship between the levels of iron indices and diabetes mellitus type 2. Type 2
Type of the study: Cross –sectional study.
Methods: diabetes mellitus is clinical condition characterized by hyperglycemia due to the absolute or relative deficiency of insulin. It is also followed by pathological abnormalities like impaired insulin secretion, peripheral insulin resistance, and excessive hepatic glucose production. Although type 2 diabetes mellitus i
... Show MorePM3 and DFT quantum mechanical calculations were employed to give further
insight into the inhibition efficiency of the newly prepared cefotaxime amic acid
derivative. The calculated physical properties and quantum chemical parameters
correlated to the inhibition efficiency such as EHOMO (highest occupied molecular
orbital energy), ELUMO (lowest unoccupied molecular orbital energy), the energy gap
(ΔE(HOMO-LUMO)), hardness (η), softness (S), dipole moment (μ), electron affinity
(EA), ionization potential (IE) and active site absorption..…etc., all studied and
discussed at equilibrium geometry in the gas phase and at its right symmetry (C1).
Experimentally the newly prepared cefotaxime derivative could be abso
This research paper studies the use of an environmentally and not expensive method to degrade Orange G dye (OG) from the aqueous solution, where the extract of ficus leaves has been used to fabricate the green bimetallic iron/copper nanoparticles (G-Fe/Cu-NPs). The fabricated G‑Fe/Cu-NPs were characterized utilizing scanning electron microscopy, BET, atomic force microscopy, energy dispersive spectroscopy, Fourier-transform infrared spectroscopy and zeta potential. The rounded and shaped as like spherical nanoparticles were found for G-Fe/Cu‑NPs with the size ranged 32-59 nm and the surface area was 4.452 m2/g. Then the resultant nanoparticles were utilized as a Fenton-like oxidation catalyst. The degradation efficiency of
... Show MoreBackground: Esthetic treatment is the options of patient seeking orthodontic treatment. Therefore this study was conducted to measure the concentration of Aluminum, Nickel, Chromium and Iron ions released from combination of monocrysralline brackets with different arch wires immersed in artificial saliva at different duration, to evaluate the corrosion point on different parts of the orthodontic appliances before and after immersion in artificial saliva, and to evaluate the corrosion potential of each group of the orthodontic appliances. Material and methods: Eighty orthodontic sets prepared. Each set represents half fixed orthodontic appliance, from the central incisor to the first molar, for the maxillary arch, each set consisted of molar
... Show More