Urban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to analyze time series based on current values to predict the series values in the future without relying on the past or historical values of the studied series. The research questions in this study are formulated thus: What are the trends in the patterns of urban land use functions in Al-Najaf, Iraq, between 2005 to 2015? How can the values of the changes be predicted for the year 2025? The hypothesis is based on the increasing spatial functional change of land use patterns in the city during the study period due to various economic and social factors. Making accurate predictions of the size of spatial changes motivates this study as a guide to urban management towards developing possible solutions to address the effects of this change, as well as the need to understand its causes and future upward trends. The contribution of this article is the presented outlook for spatial functions for the next 10 years. The computations using the Markov chain model will enable management to understand future relations and develop appropriate policies to reduce the hazards of unplanned changes in the city. Results show that residential posts, slums, and commercial activities are getting worse, while change values for industrial functions and other things are going down.
In this reserch Some new substituted and unsubstituted poly imides compounds. were synthesized by reaction of acrylol chloride with different amides (aliphatic and aromatic) in a suitable solvent in the presence amount triethyl amine (Et3N) with heating. The Structure confirmation of all polymers were confirmed using FT-IR,1H-NMR,13C-NMR and UV spectroscopy. Thermal analysis (TG) for some polymers showed their thermal stabilities. Other physical properties including softening points, melting point and solubility of the polymers were also measured
Our goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz
The problem of rapid population growth is one of the main problems effecting countries of the world the reason for this the growth in different environment areas of life commercial, industrial, social, food and educational. Therefore, this study was conducted on the amount of potable water consumed using two models of the two satellite and aerial images of the Kadhimiya District-block 427 and Al-Shu,laa district-block 450 in Baghdad city for available years in the Secretariat of Baghdad (2005, 2011,2013,2015). Through the characteristics of geographic information systems, which revealed the spatial patterns of urban creep by determining the role and buildings to be created, which appear in the picture for the
... Show MoreThe research discusses the formal transformation in urban structure, all the cities around the world have undergone a series of formal transformations, resulting in radical transformations to their functions. And to calculate this transformation the descriptive analytical method was applied to this research. First, local urban management data and Landsat-9 visual data were used after processing by GIS. Then, the data were processed mathematically based on their engineering sequences. The aims of this research were as follows: to explore the formal transformations in cities, their dimensions and their consequences and impacts; to identify the underlying causes of their occurrence by deriving realistic results from trends in such degrees of t
... Show MorePredicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and
... Show MoreThis paper introduced an algorithm for lossless image compression to compress natural and medical images. It is based on utilizing various casual fixed predictors of one or two dimension to get rid of the correlation or spatial redundancy embedded between image pixel values then a recursive polynomial model of a linear base is used.
The experimental results of the proposed compression method are promising in terms of preserving the details and the quality of the reconstructed images as well improving the compression ratio as compared with the extracted results of a traditional linear predicting coding system.
In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More