Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the limitation of traditional AVs, we proposed a virus detection system based on extracting Application Program Interface (API) calls from virus behaviors. The proposed research uses static analysis of behavior-based detection mechanism without executing of software to detect viruses at user mod by using Markov Chain.
With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreIntelligent Transportation Systems (ITS) have been developed to improve the efficiency and safety of road transport by using new technologies for communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) are a subset of ITS widely used to solve different issues associated with transportation in cities. Road traffic congestion is still the most significant problem that causes important economic and productivity damages, as well as increasing environmental effects. This paper introduces an early traffic congestion alert system in a vehicular network, using the internet of things (IoT) and fuzzy logic, for optimizing the traffic and increasing the flow. The proposed system detects critical driving conditions, or any emerge
... Show MoreThe determination of manganese (II) using flow injection analysis with chemiluminescence detection was investigated. Mn2+ in sample solutions injected into a carrier stream of sodium bismuthate (NaBiO3) were oxidised to form MnO4- ions which were capable of producing luminescence after reaction with luminol/KOH in a flow cell. The linear range of the system is from 20 to 80 mg/L with a detection limit 8 mg/L. The proposed system is suitable for determination of Mn2+ in steel alloys after dissolution, filtration and dilution at a rate of approximately 60 samples per hour with a relative standard deviation (RSD)1.2%. Statistical comparison between the proposed system and standard spectrophotometric method revealed that there is no signific
... Show MoreNine Iraqi varieties of barley (Hordeum vulgare L.) has been differentiated and diagnosed using simple sequence repeat markers to detect their genetic polymorphism. Six SSR primers were used for genetic screening of barley samples (IPA 265, IPA 99, Tuwaitha, Hitra, Rayhan, Shuaa, Bawadi, Samir and Al_khair). These primers generated total PCR product (11) bands divided to 8 polymorphic bands 3 monomorphic bands. the percentage of polymorphism 80% ranged between (50-100%). a mean value of polymorphic band per primer was 1.6 . these primers produced amplification fragment at Molecular weight between 75-900 bp. One unique band was generated at size 200bp, this band can be used as a DNA profiling of all studied genotypes. These results appear
... Show MoreIn this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food chain model. The system provides one commensal prey, one harvested prey, and two predators. A set of preliminary results in local bifurcation analysis around each equilibrium point for the proposed model is discussed, such as saddle-node, transcritical and pitchfork. Some numerical analysis to confirm the accruing of local bifurcation is illustrated. To back up the conclusions of the mathematical study, a numerical simulation of the model is carried out with the help of the MATLAB program. It can be concluded that the system's coexistence can be achieved as long as the harvesting rate on the second prey population is
... Show MoreAbstract
Hexapod robot is a flexible mechanical robot with six legs. It has the ability to walk over terrain. The hexapod robot look likes the insect so it has the same gaits. These gaits are tripod, wave and ripple gaits. Hexapod robot needs to stay statically stable at all the times during each gait in order not to fall with three or more legs continuously contacts with the ground. The safety static stability walking is called (the stability margin). In this paper, the forward and inverse kinematics are derived for each hexapod’s leg in order to simulate the hexapod robot model walking using MATLAB R2010a for all gaits and the geometry in order to derive the equations of the sub-constraint workspaces for each
... Show MorePattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o
... Show MoreIntrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreFacial identification is one of the biometrical approaches implemented for identifying any facial image with the use of the basic properties of that face. In this paper we proposes a new improved approach for face detection based on coding eyes by using Open CV's Viola-Jones algorithm which removes the falsely detected faces depending on coding eyes. The Haar training module in Open CV is an implementation of the Viola-Jones framework, the training algorithm takes as input a training group of positive and negative images, and generates strong features in the format of an XML file which is capable of subsequently being utilized for detecting the wanted face and eyes in images, the integral image is used to speed up Haar-like features calc
... Show More