Castellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve compactness and local buckling (web and flange local buckling), as a result of steel section encasement. This study presents axial load test results for four specimens Castellated columns section encasement by Reactive powder concrete (RPC) with laced reinforcement. The encasement consists of, flanges unstiffened element height was filled with RPC for each side and laced reinforced which are used inclined continuous reinforcement of two layers on each side o0f the web of the castellated column. The inclination angle of lacing reinforcement concerning the longitudinal axis is 45o. Four specimens with four different configurations will be prepared and tested under axial load at columns. The first group was the control group (CSC1) Unconfined castellated steel column, the second group was consists of Castellated columns (web and flange) confined with 17mm of (RPC), welded web, and 6mm laced reinforcement (CSC3). While group three (CSC4) consists of a Castellated steel column same as the sample (CSC3), but without using welding between two parts of the castellated steel column. Groups four and five consist of a Castellated steel column same as sample (CSC4) encased partially with reactive powder concrete (25.5 mm) (CSC5) and full encased flange with reactive powder concrete (34mm) mm (CSC6), respectively. The tested specimens' results show that an increase in the strength of the column competitive with increasing the encased reactive powder concrete thickness. And the best sample was sample CSC6 with (34mm) mm in experimental and ABAQUS results.
The sintering behavior of Alumina was investigated by adding TiO2. The addition of TiO2 lowered the sintering temperature of the Alumina compared with those of pure Alumina. The result suggests that TiO2 acts as an activator for sintering of Alumina. Water absorption, apparent porosity and density were examined for both pure and TiO2 added to Alumina samples. The variations of sintering behavior were discussed in terms of shrinkage, porosity, water absorption and density. Thermal shock resistance was also examined. In term of this work, the way of improving the thermal shock resistance in oxide- based materials by adding reactive Titania powder to the Alumina samples. The laboratory results showed an improvement in thermal shock resistance
... Show MoreThis paper deals with testing defected model piles in the soil in order to study their behavior. In this respect, the results of model pile tests are discussed either geotechnically or structurally according to the type of failure. Two parameters were studied in order to evaluate the general behavior of defective piles. These parameters include the defect location and the defect type for floating and end bearing pile. The results of the experimental work indicated that the critical case for floating pile is seen to be when the defect of (5%) at the first third of the pile length at which the decrease in the bearing capacity is about (21%), while the decrease in the bearing capacity is found to be (14%) and (10%), when
... Show MoreThis paper deals with testing defected model piles in the soil in order to study their behavior. In this respect, the results of model pile tests are discussed either geotechnically or structurally according to the type of failure.
Two parameters were studied in order to evaluate the general behavior of defective piles. These parameters include the defect location and the defect type for floating and end bearing pile. The results of the experimental work indicated that the critical case for floating pile is seen to be when the defect of (5%) at the first third of the pile length at which the decrease in the bearing capacity is about (21%), while the decrease in the bearing capacity is found to be (
... Show MoreIn the oil industry, the processing of vacuum residue has an important economic and environmental benefit. This work aims to produce industrial petroleum coke with light fuel fractions (gasoline, kerosene , gas oil) as the main product and de asphalted oil (DAO) as a side production from treatment secondary product matter of vacuum residue. Vacuum residue was produced from the bottom of vacuum distillation unit of the crude oil. Experimentally, the study investigated the effect of the thermal conversion process on (vacuum residue) as a raw material at temperature reaches to 500 °C, pressure 20 atm. and residence time for about 3 hours. The first step of this treatment is constructing a carbon steel batch re
... Show MoreThe inhibition of 3-Benzyl -2-mercaptoquinoizoline -4 (3H)-one (BMQ) on the corrosion of carbon steel in 0.5 M HCl studied by potentionstat polarization methods at 303–333 K. Results obtained show that BMQ act as inhibitor for carbon steel in HCl solution. The inhibition efficiency increase with increase in BMQ concentration. Activation parameters and Gibbs free energy for the adsorption process using Statistical Physics calculated and discussed. Quantum chemical calculations using DFT at the B3LYP/6-31G level of theory were used to calculate some electronic properties of the molecule to verify any correlation between the inhibitive effect and molecular structure of BMQ. The quantum calculations were proceeded to get data around correlati
... Show MoreThis research involves the synthesis of some sulphanyl benzimidazole derivatives (Ia-c), which were prepared from reaction of 2-mercaptobenzimidazole substituted benzyl halide, and structures were identified by spectral methods[FTIR, 1H-NMR and 13C-NMR].These compounds were investigated as corrosion inhibitors for carbon steel in 1M H2SO4 solution using weight loss, potentiostatic polarization methods; obtained results showed that the sulphanyl benzimidazole derivatives retard both cathodic and anodic reactions in acidic media, by virtue of adsorption on the carbon steel surface. This adsorption obeyed Langmuir’s adsorption isotherm. The inhibition efficiency of (Ia-c) ranging between (65-92) %. By using different Ib derivative conc
... Show MoreThe aim of this research is to study the effect of welded joint design (Butt joint and lap joint) on thejoint strength during tension and fatigue loading with different current of welding (40,50,60,70,80) ^per, and different type of wire welding. The result of this research is showed that the effect of fatigue loading on the type of joint is more than the effect of tension loading on it. And the butt joint welding is better than the lap joint welding during the fatigue loaded.The experimental results of the effect of W'elding current showed that more increasing and more decreasing the value of the heat input, during the welding was found to produce mechanical brittleness on the buttjoint welding during the static and dynamic loading. Also i
... Show MoreThis research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers a
... Show MoreReliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con
... Show More
