The nuclear size radii, density distributions and elastic electron scattering charge form factors for Fluorine isotopes (17,19,20,24,26F) were studied using the radial wave functions (WF) of harmonic-oscillator (HO) potential and free mean field described by spherical Hankel functions (SHF) for the core and the valence parts, respectively for all aforementioned isotopes. The parameters for HO potential (size parameter ) and SHF were chosen to regenerate the available experimental size radii. It was found that using spherical Hankel functions in our work improved the calculated results quantities in comparison with empirical data.
A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
The Rivest–Shamir–Adleman (RSA) and the Diffie-Hellman (DH) key exchange are famous methods for encryption. These methods depended on selecting the primes p and q in order to be secure enough . This paper shows that the named methods used the primes which are found by some arithmetical function .In the other sense, no need to think about getting primes p and q and how they are secure enough, since the arithmetical function enable to build the primes in such complicated way to be secure. Moreover, this article gives new construction of the RSA algorithm and DH key exchange using the
primes p,qfrom areal number x.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
In this paper, two parameters for the Exponential distribution were estimated using the
Bayesian estimation method under three different loss functions: the Squared error loss function,
the Precautionary loss function, and the Entropy loss function. The Exponential distribution prior
and Gamma distribution have been assumed as the priors of the scale γ and location δ parameters
respectively. In Bayesian estimation, Maximum likelihood estimators have been used as the initial
estimators, and the Tierney-Kadane approximation has been used effectively. Based on the MonteCarlo
simulation method, those estimators were compared depending on the mean squared errors (MSEs).The results showed that the Bayesian esti
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
The process of selection assure the objective of receiving for chosen ones to high levels more than other ways , and the problem of this research came by these inquires (what is the variables of limits we must considered when first preliminaries selections for mini basket ? and what is the proper test that suits this category ? and is there any standards references it can be depend on it ?) also the aims of this research that knowing the limits variables to basketball mini and their tests as a indicators for preliminaries for mini basketball category in ages (9-12) years and specifies standards (modified standards degrees in following method) to tests results to some limits variables for research sample. Also the researchers depends on (16)
... Show MoreSome relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreSome experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.