This paper introduces an innovative method for image encryption called "Two-Fold Cryptography," which leverages the Henon map in a dual-layer encryption framework. By applying two distinct encryption processes, this approach offers enhanced security for images. Key parameters generated by the Henon map dynamically shape both stages of encryption, creating a sophisticated and robust security system. The findings reveal that Two-Fold Cryptography provides a notable improvement in image protection, outperforming traditional single-layer encryption techniques.
In modern era, which requires the use of networks in the transmission of data across distances, the transport or storage of such data is required to be safe. The protection methods are developed to ensure data security. New schemes are proposed that merge crypto graphical principles with other systems to enhance information security. Chaos maps are one of interesting systems which are merged with cryptography for better encryption performance. Biometrics is considered an effective element in many access security systems. In this paper, two systems which are fingerprint biometrics and chaos logistic map are combined in the encryption of a text message to produce strong cipher that can withstand many types of attacks. The histogram analysis o
... Show MoreThe need to exchange large amounts of real-time data is constantly increasing in wireless communication. While traditional radio transceivers are not cost-effective and their components should be integrated, software-defined radio (SDR) ones have opened up a new class of wireless technologies with high security. This study aims to design an SDR transceiver was built using one type of modulation, which is 16 QAM, and adding a security subsystem using one type of chaos map, which is a logistic map, because it is a very simple nonlinear dynamical equations that generate a random key and EXCLUSIVE OR with the originally transmitted data to protect data through the transmission. At th
... Show MoreThe effect of the initial pressure upon the laminar flame speed, for a methane-air mixtures, has been detected paractically, for a wide range of equivalence ratio. In this work, a measurement system is designed in order to measure the laminar flame speed using a constant volume method with a thermocouples technique. The laminar burning velocity is measured, by using the density ratio method. The comparison of the present work results and the previous ones show good agreement between them. This indicates that the measurements and the calculations employed in the present work are successful and precise
Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.
Classical cryptography systems exhibit major vulnerabilities because of the rapid development of quan tum computing algorithms and devices. These vulnerabilities were mitigated utilizing quantum key distribution (QKD), which is based on a quantum no-cloning algorithm that assures the safe generation and transmission of the encryption keys. A quantum computing platform, named Qiskit, was utilized by many recent researchers to analyze the security of several QKD protocols, such as BB84 and B92. In this paper, we demonstrate the simulation and implementation of a modified multistage QKD protocol by Qiskit. The simulation and implementation studies were based on the “local_qasm” simulator and the “FakeVigo” backend, respectively. T
... Show More<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt& pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by usi
... Show MoreThe Geographic Information System (GIS) is considered one of the most prominent programs used to collect, analyze, display, process, and produce geographic information maps for a specific purpose. It is also considered one of the modern database programs. Additionally, we can perform statistical analysis within GIS on predefined data to produce quantitative results. In this study, data was collected from more than 80 engineering projects established in Baghdad City from soil investigation reports for the projects. Geographic information systems were used to produce objective maps showing the variation in the bearing capacity of shallow foundations in the soil of Baghdad Governorate. I