This paper introduces an innovative method for image encryption called "Two-Fold Cryptography," which leverages the Henon map in a dual-layer encryption framework. By applying two distinct encryption processes, this approach offers enhanced security for images. Key parameters generated by the Henon map dynamically shape both stages of encryption, creating a sophisticated and robust security system. The findings reveal that Two-Fold Cryptography provides a notable improvement in image protection, outperforming traditional single-layer encryption techniques.
Hemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst