Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and estimation. The current method (visual quantification methods) of image quantification is time-consuming and cumbersome, and manual measurement is imprecise because of the natural differences among human eyes’ abilities. Subsequently, objective outcome evaluation can obviate the drawbacks of the current methods and facilitate recording for documenting function and research purposes. To achieve a fast and valuable objective estimation of fluorescence in each image, an algorithm was designed based on machine vision techniques to extract the targeted objects in images that resulted from confocal images and then estimate the covered area to produce a percentage value similar to the outcome of the current method and is predicted to contribute to sustainable biotechnology image analyses by reducing time and labor consumption. The results show strong evidence that t-designed objective algorithm evaluations can replace the current method of manual and visual quantification methods to the extent that the Intraclass Correlation Coefficient (ICC) is 0.9.
The aim of the study is to detect the malignant conditions of the skin tumors through the features of optical images. This research included some of image processing techniques to detect skin cancer as a strong threat to human beings' lives. Using image processing and analysis methods to improves the ability of pathologists to detect this disease leading to more specified diagnosis and better treatment of them. One hundred images were collected from Benign and Malignant tumors and some appropriate image features were calculated, like Maximum Probability, Entropy, Coefficient of Variation, Homogeneity and Contrast, and using Minimum Distance method to separate these images. These features with Minimum Distance as a proposed making decision a
... Show Morethe study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista
In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreThe rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in
... Show Morehave been notable developments in the field of
r.ldical education in the country and in the region.
The most significant of which is a general awarness
that has been created about the need for and
relevance of changes.There is however a basic
question that posses itself and becomes clearly
relevant
in the context of effort .Today, to recognize health
care services in the developing countries in the light
of realigned priorities This ensure to bring about
learning outcomes as a tocurriculum changes to meet
this demand.
This study was conducted on five kinds of local soybean seeds (Ibaa, Hawija, Taqa.2, Lee74 and Hassan). The chemical analysis results showed that Hawija soybean has the highest percent of protein which was 38-08%, The amino acid percent was also higher than the other kinds(lysine, Thereonine and Tryptopham), and being 389,250,81 mg/gm nitrogen respectively Both amino acids were important for child nutrition. Hawija was selected, being the best for proteins and basic amino acids, and was utilized in preparation of the adjunct baby food formula. Eighteen formulas had been prepared by using soybean flour kind(Hawija), wheat flour kind (Abu gharib) and full fat powder milk (NIDO). Each formula contained 20% protein as recommended by F.A.O, W.
... Show More