Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of transcriptional factors and mesenchymal proteins, including Snail1, vimentin and N-cadherin, which also occur in the EMT program. Clinically, these phenotypic changes may be reflected by increases in microulceration of the pocket epithelial lining, granulation tissue formation, and fibrosis. Both in vitro and in vivo data now support the potential involvement of EMT as a pathogenic mechanism in periodontal diseases which may facilitate bacterial invasion into the underlying gingival tissues and propagation of inflammation. This review surveys the available literature and provides evidence linking EMT to periodontitis pathogenesis.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreIn the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show MoreThe report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the problem of the semiotic employment of religious symbols in press reports published in the electronic press across two levels: Reading to perceive the visual message in its abstract form, and the second for re-understanding and interpretation, as this level gives semantics to reveal the implicit level of media messages through a set of semiotic criteria on which it was based to cut texts to reach the process of understanding and interpretation.
The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the p
... Show MoreNowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th
... Show MoreIn this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that
... Show MoreBackground: Liver metastasis significantly complicates cancer prognosis, yet easily accessible markers for its early detection and monitoring remain crucial. This study aimed to comprehensively evaluate key hematological parameters as potential indicators for liver metastasis in Iraqi patients. Methods: We conducted a cross-sectional study comparing hematological profiles between 90 patients (presumably with liver metastasis) and 30 healthy controls. White Blood Cell (WBC) count, Lymphocyte percentage, Neutrophil percentage, and Neutrophil-to-Lymphocyte Ratio (NLR) were analyzed. Given non-normal data distributions (confirmed by the Shapiro-Wilk test), group comparisons were performed using the non-parametric Mann-Whitney U test.
... Show More