—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when combined principal component analysis and feed forward back propagation neural network. This work has investigated the ability to improve the CAD system in order to use in detection abnormality even with low cost diagnosis methods (such as mammogram images or X-ray). The results show that the reduction of correlated details within the training data by using the PCA method can enhance the recognition performance. The performance of the neural network diagnostic to discriminate the normal cases from cancerous cases, evaluated by using recognition analysis show a high accuracy in detection. The proposed approach can be considered as a potential tool for diagnosis breast cancer from x-ray and mammography images and prediction for nonexperts and clinicians.
The need for participants’ performance assessments in academia and industry has been a growing concern. It has attendance, among other metrics, is a key factor in engendering a holistic approach to decision-making. For institutions or organizations where managing people is an important yet challenging task, attendance tracking and management could be employed to improve this seemingly time-consuming process while keeping an accurate attendance record. The manual/quasi-analog approach of taking attendance in some institutions could be unreliable and inefficient, leading to inaccurate computation of attendance rates and data loss. This work, therefore, proposes a system that employs embedded technology and a biometric/ w
... Show MoreThe research aims to identify the role of organizational identity in improving work teams, and to suggest ways to deal with the outputs of work teams in a way that achieves the goals of the Baghdad Traffic Directorate as it is the subject of the application of the research, while the research community was represented by its officers, while the research sample was embodied in (General Director, Associate The Director General, the directors of Rusafa and Karkh traffic and their assistants, as well as the heads of the divisions and the officials of the departments) in it. The sample was (200) observations. The descriptive exploratory approach was devoted to conducting the research, relying on the questionnaire in data collection, as well as e
... Show MoreBackground: Acute appendicitis is the most common abdominal surgical emergency. The diagnosis of this condition is still essentially clinical and there is difficulty in the clinical diagnosis, especially among elderly, children and patients with a typical presentation, so early and accurate diagnosis of acute appendicitis is important to avoid its complications.Objectives: To evaluate the degree of accuracy of Alvarado scoring system in the diagnosis of acute appendicitis.Method: Two hundred patients were admitted to the Alkindy Teaching Hospital from January 2011 to april 2014- presented with symptoms and signs suggestive of acute appendicitis. After examination and investigations all patients were given a score according to Alvarado sc
... Show MoreThe study aims to investigate the effectiveness of cognitive-behavioral counseling in reducing symptoms of social anxiety and improving social skills among a sample of intermediate school students in the city of Souq Al-Shuyukh at Dhi Qar Governorate. The sample consisted of (40) female students, their ages ranged (14-15). They were selected based on their high scores on the social anxiety scale. The sample was divided into two groups: an experimental group, and a control group, equal in number (20) students in each group. The researcher used the social anxiety scale and the social skills scale. In addition, he used the cognitive-behavioral counseling program, consisting of (11) counseling sessions, with a rate of (45) minutes per sessio
... Show MoreAssessing performance efficiency is critical to the management need for oversight, planning, and continuous periodic evaluation of the multiple activities of Northern Cement State Company in order to determine the level of achievement of the objectives set, and to correct the deviations and delays that the evaluation shows and limitation of liability. What cannot be measured cannot be managed. The aim of this research is to highlight the impact of using BSC, financial and non-financial, to give comprehensive and clear picture of the company's performance and to measure the quality of its performance by using six-sigma and the level of deviations in achieving the planned goals. Therefore, four-key hypotheses were formulated for th
... Show MoreA field study aimed to improve administrative performance of the Heads of Departments in Wasit University in light of the administrative functions, a questionnaire constructed was c of 38 items, as have been applied during the academic year 2014/2015 to a group of experts from the deans and assistants, professors and heads of departments using the Delphi method by two rounds the adoption rate of 90% and an agreement was numbered 30 experts and study reached important results have been analyzed and discussed according to fields of study, a planning, organization and direction.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.