—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when combined principal component analysis and feed forward back propagation neural network. This work has investigated the ability to improve the CAD system in order to use in detection abnormality even with low cost diagnosis methods (such as mammogram images or X-ray). The results show that the reduction of correlated details within the training data by using the PCA method can enhance the recognition performance. The performance of the neural network diagnostic to discriminate the normal cases from cancerous cases, evaluated by using recognition analysis show a high accuracy in detection. The proposed approach can be considered as a potential tool for diagnosis breast cancer from x-ray and mammography images and prediction for nonexperts and clinicians.
Catalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this pro
... Show MoreA frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show MoreThis study was conducted in Animal Resources Department , College of Agriculture to estimate the effect of chemical and biological treatments to improve the nutritive value of poor quality roughages ( corn cobs and wild reed ) . The feeds were treated chemically with 4% NaoH solution ,whereas Aspergillus niger was used to ferment corn cobs and wild reed samples . The chemical analysis showed that protein percentages of corn cobs and wild reed was increased significantly (P<0.05) from 6.05% to 10.51% and 17.70% and from 3.10 %to 6.50% and 9.96% for both chemical and biological treatments respectively. The crude fiber percentages decreased significantly (P<0.05) from 29.19% and 26.10% to 23.60% and 20.10% for chemical treatment and was 20
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show More
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show More