—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when combined principal component analysis and feed forward back propagation neural network. This work has investigated the ability to improve the CAD system in order to use in detection abnormality even with low cost diagnosis methods (such as mammogram images or X-ray). The results show that the reduction of correlated details within the training data by using the PCA method can enhance the recognition performance. The performance of the neural network diagnostic to discriminate the normal cases from cancerous cases, evaluated by using recognition analysis show a high accuracy in detection. The proposed approach can be considered as a potential tool for diagnosis breast cancer from x-ray and mammography images and prediction for nonexperts and clinicians.
In this paper a comparison of the experimental of evacuated tube solar water heater systems with and without mirror flat reflector. The aim of using the reflector to improve thermal efficiency, and the data gathered which are (temperature, solar irradiation and time) for three days were compared. the results from compared data the temperature lower increase in evacuated tube solar water heater system without reflector than the temperature increase in evacuated tube solar water heater system with reflector .The results show (53, 39, 35) % for three days respectively that the evacuated tube solar water heater system with reflector has higher thermal efficiencies than the results (47, 28, 30) % for three days respectively thermal efficiencies
... Show MoreThis work describes the enhancement of phenol red decolorization through immobilizing of laccase in chitosan and enzyme recycling. Commercial laccase from white rot fungus, Trametesversicolor (Tvlac), was immobilizedin to freshly prepared chitosan beads by using glutaraldehyde as a cross linker. Characterization of prepared chitosan was confirmed by FTIR and scanning electron microscope (SEM). Tvlac (46.2 U/mL) immobilized into chitosan beads at 0.8 % glutaraldehyde (v/v) within 24 hrs. Synthetic (HBT) and natural (vanillin) mediators were used to enhance dye decolorizoation. It was found that 89 % of phenol red was decolorized by chitosan beads within 180 min. in the absence of enzyme and mediator, while decolorization percenta
... Show MoreThe corrosion of carbon steel in single phase (water with 0.1N NaCl ) and two immiscible phases (kerosene-water) using turbulently agitated system is investigated. The experiments are carried out for Reynolds number (Re) range of 38000 to 95000 corresponding to rotational velocities from 600 to 1400 rpm using circular disk turbine agitator at 40 0C. In two-phase system test runs are carried out in aqueous phase (water) concentrations of 1 % vol., 5 % vol., 8% vol., and 16% vol. mixed with kerosene at various Re. The effect of Reynolds number (Re), percent of dispersed phase, dispersed drops diameter, and number of drops per unit volume on the corrosion rate is investigated and discussed. Test runs are carried out using two types of
... Show MoreNitrogen (N) fertilizer rate is important for high yield and good quality of potato tubers. In this dissertation, I seek to study the response of different potato cultivars under different N fertilizer rates and how that can impact tuber quality, examine the performance of active optical sensors in improving a potato yield prediction algorithm, and evaluate the ability of active optical sensors (GreenSeeker (GS) and Crop Circle (CC)) to optimize a N recommendation algorithm that can be used by potato growers in Maine. This research was conducted at 11 sites over a period of two years (2018–2019) in Aroostook County, Maine; all sites depended on a rainfed system. Three potato cultivars, Russet Burbank, Superior, and Shepody, were planted u
... Show MoreThis paper proposed a theoretical treatment to study underwater wireless optical communications (UWOC) system with different modulation schemes by multiple input-multiple output (MIMO) technology in coastal water. MIMO technology provides high-speed data rates with longer distance link. This technique employed to assess the system by BER, Q. factor and data rate under coastal water types. The reliability of the system is examined by the techniques of 1Tx/1Rx, 2Tx/2Rx, 3Tx/3Rx and 4Tx/4Rx. The results shows the proposed technique by MIMO can get the better performance compared with the other techniques in terms of BER. Theoretical results were obtained to compare between PIN and APD
Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame