In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model during different actions. The model contained: input signals, data selection according to the activation regions in the brain, features extraction, classification according to the frequency ranges of each action, and an interface with an embedded system to control the actuators.
Electronic Health Record (EHR) systems are used as an efficient and effective method of exchanging patients’ health information with doctors and other key stakeholders in the health sector to obtain improved patient treatment decisions and diagnoses. As a result, questions regarding the security of sensitive user data are highlighted. To encourage people to move their sensitive health records to cloud networks, a secure authentication and access control mechanism that protects users’ data should be established. Furthermore, authentication and access control schemes are essential in the protection of health data, as numerous responsibilities exist to ensure security and privacy in a network. So, the main goal of our s
... Show MoreIntroduction: Elite football performance hinges on rapid tactical decision-making under physical and cognitive strain. While peripheral fatigue’s effects on motor output are well documented, the neurophysiological markers of mental fatigue and their impact on in-game decision making remain underexplored. Objective: To determine how EEG-derived central fatigue indices—frontal theta power and the theta/alpha ratio—relate to tactical decision accuracy and speed in elite football players. Methodology: Twenty male national-level footballers (age 22.4 ± 2.1 years; ≥ 5 years’ experience) completed the Yo-Yo Intermittent Recovery Test Level 1 while wearing an 8-channel dry-electrode frontal EEG headset. Frontal theta
... Show MoreDifferent methods of encryption that are widely used in smart card have been presented. Because of the usefulness and widespread application of Food Ration Card throughout our country, three models of designing and simulations are developed. A comparison between the different models is done. The first model is the Food Ration Card without using any security method. The second model is the Food Ration Card with using an AES algorithm as a security method. The third model is the Food Ration Card with using RSA method. All models are implemented and simulated using BasicCard Development kit Environment. For the first model, a Compact BasicCard version ZC1.1 is used. While for the second and third models, a Professional BasicCard versi
... Show MoreAs a marker of systemic inflammation, raised (C-reactive protein (CRP)) concentrations which are still within the normal range have been associated with an increased inflammation of chronic renal diseases (CRD). The current study aimed to establish potential determinats of raised CRP concentrations in patients who treated in Heamodialysis room,then study the relationship between CRP& some biochemical parameters related CRD We used a CRP latex reagents Kit which is based on an immunological reaction between CRP antisera bounded to the biologically inert latex particles or with CRP in the test specimens of 19 patients with (CRD) mean age 48 years ,range = 30?65 & in 21 healthy subjects as control group their age range = 30 ?45 years. The
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreThis paper presents the Extended State Observer (ESO) based repetitive control (RC) for piezoelectric actuator (PEA) based nano-positioning systems. The system stability is proved using Linear Matrix Inequalities (LMIs), which guarantees the asymptotic stability of the system. The ESObased RC used in this paper has the ability to eliminate periodic disturbances, aperiodic disturbances and model uncertainties. Moreover, ESO can be tuned using only two parameters and the model free approach of ESO-based RC, makes it an ideal solution to overcome the challenges of nano-positioning system control. Different types of periodic and aperiodic disturbances are used in simulation to demonstrate the effectiveness of the algorithm. The comparison studi
... Show More