Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the particle swarm optimization (PSO) technique. It was discovered in this investigation that the new stress-strain model predictions are consistent with the remaining 20% of the experimental stress-strain curves obtained. Case studies of hybrid–fiber–reinforced concrete constructions were investigated in order to better understand the behavior of such elements. The data revealed that the proposed model has the highest absolute relative error (ARE) frequencies (ARE 10%) and the lowest absolute relative error (ARE > 15%) frequencies (ARE > 15%).
Recently times, industrial development has increased, including plastic industries, and since plastic has a very long analytical life, it will cause environmental pollution. Therefore studies have resorted to reusing recycled plastic waste (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, some studies were reviewed and then summarized into several things, including the percentage of plastic replacement from the aggregate and the effect of this percentage on the fresh properties of concrete, such as the workability and the effect of plastic waste on the hardening properties of concrete such as dry density, compressive, tensile and flexural strength.
Vitamin D receptor (VDR) is a nuclear transcription factor that controls gene expression. Its impaired expression was found to be related to different diseases. VDR also acts as a regulator of different pathways including differentiation, inflammation, calcium and phosphate absorption, etc. but there is no sufficient knowledge about the regulation of the gene itself. Therefore, a better understanding of the genetic and epigenetic factors regulating the VDR may facilitate the improvement of strategies for the prevention and treatment of diseases associated with dysregulation of VDR. In the present investigation, a set of databases and methods were used to identify putative functional elements in the VDR locus. Histone modifications, CpG I
... Show MoreWere studied changes in the concentration of copper, iron and zinc in blood serum of one hundred patients with chronic kidney and treated dialysis blood were also measured the level of calcium kidney and phosphate Calciotropic in serum of these patients took samples of blood from these patients before and after treatment dialysis vessels as well as the statement of changes in those standards Alkimaahiatih Results were compared with twenty-five healthy people (control group)
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThe aim of this study is to determine the effect of cold plasma on nails pH, creatine levels and the accumulative of some trace elements in humans nails. Creatine levels in the blood, as well as pH and trace elements, were measured before and after (1, 2) months of plasma exposure in both gender (men and women) between the ages of 22 and 25 years. Nails are exposed to cold plasma with a voltage of (175 volts) and (2 gas flow). After one month of exposure, there was no significant change in the levels of all parameters, but after 2 months, the concentration of creatine and pH had reached a near- neutral value. In both men and women, calcium concentration increased and showed a positive response to cold plasma, while the v
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show More