Preferred Language
Articles
/
-UIvtpoBMeyNPGM3tc7C
الفصل الرابع/ العدسات
...Show More Authors

العدسة ( The Lens) العدسة جهاز بصري لها سطحي انكسار احدهما او كلاهما كروي الشكل ولسطحيهما نفس المحور الذي يسمى محور العدسة (axis). يكون محور العدسة الخط المستقيم الذي يصل بين مركزي السطحين الكرويين وعمودياً على كلاهما. وطبقا لكيفية انكسار ومرور الضوء في العدسة ونوعية الصور الناتجة عنها، فهي توصف بأنها عدسة محدبة (لامة) أو مقعرة (مفرقة) . ان الوظيفة الاساسية للعدسة هي تكوين الصور(image formation) من خلال تغيير مسار الاشعة النافذة اليها عن طريق الانكسار في وجهي العدسة ، اما الاستخدامات الاخرى فتتضمن تركيز الاشعة الضوئية (ray concentration) ، وتسديد الاشعة (collimation) وتنظيم الاستضاءة للمصادر الضوئية (illumination) . هناك أنواع أخرى من العدسات غير كروية لها استخدامات خاصة مثل العدسات الاسطوانية التي تركز الاشعة على محور معين أو عدسة القطع المكافئ . تقسم العدسات حسب شكلها الى نوعين رئيسيين : العدسات الرقيقة (thin lenses) التي تمتلك سمك صغير نسبيا بالمقارنة مع الابعاد البصرية الاخرى ( مثل البعد البؤري ونصف قطر التكور) ، والعدسات السميكة (thick lenses) التي تمتلك سمك كبير نسبيا بالمقارنة مع الابعاد البصرية الاخرى . العدسات الرقيقة (Thin Lenses) هي العدسات ذات السمك الصغير بالمقارنة مع الابعاد البصرية الاخرى ، وهي العدسات الاكثر استخداما في كثير من المجالات الطبية والعلمية والصناعية والعسكرية ، حيث تستخدم في صناعة النظارات الطبية والمجهر الضوئي والتلسكوب . هناك مجموعتين من العدسات الرقيقة تصنف حسب شكلها ووظيفتها هي : مجموعة العدسات اللامة (Converging Lenses Group) هي مجموعة العدسات التي تجمع الضوء الساقط عليها في نقطة معينة بسبب احتوائها على سطح أو سطحين محدبين (الشكل (1)) تتميز بان وسطها اكثر سمكا من اطرافها ، وهي ثلاثة انواع عدسة محدبة الوجهين (equi- convex lens) لها سطحين محدبين . عدسة محدبة مستوية (plano-convex lens) لها سطح محدب واخر مستوي عدسة هلالية موجبة (positive meniscus) لها سطح محدب واخر مقعر مجموعة العدسات المفرقة (Diverging Lenses Group) هي مجموعة العدسات التي تفرق الضوء الساقط عليها بسبب احتوائها على سطح أو سطحين مقعرين (الشكل (1)) تتميز بان وسطها اقل سمكا من اطرافها ، وهي ثلاثة انواع : عدسة مقعرة الوجهين (equi- concave lens) لها سطحين مقعرين . عدسة مقعرة مستوية (plano-concave lens) لها سطح مقعر واخر مستوي عدسة هلالية سالبة (negative meniscus) لها سطح مقعر واخر محدب الشكل (1) مجموعة العدسات اللامة والمفرقة هندسة العدسات (Geometry of Lenses) تتكون العدسة من سطحين كاسرين للضوء يمر من خلالها الضوء تباعا حتى يخرج الشعاع الى الطرف الاخر، جدير بالذكر ان العدسة تصنع من مادة شفافة ( غالبا الزجاج أو البلاستيك) فيمر الضوء من الوسط الذي فيه الجسم مرورا الى وسط العدسة وانتهاءاً في الوسط الذي فيه الصورة ، لذا هناك ثلاثة اوساط فعالة في عملية انتقال الضوء خلال العدسة وبالتالي تكوين الصورة. يسمى المستقيم العمودي على وجهي العدسة والذي يمر في مركزي تكور وجهي العدسة المحور البصري أو محور العدسة (axis) كما في الشكل (2) ، اذا كانت العدسة محاطة بنفس الوسط من الجانبين فيتساوى البعد البؤري الاولي لها مع البعد البؤري الثانوي (f=f ') ، العدسة لها بؤرتين اولية وثانوية (نفس تعريف البؤرة في الفصل الثالث) احدهما على اليمين والاخرى على اليسار ، النقطة المرجعية الخاصة بحساب الأبعاد البصرية للعدسة هي نقطة مركز العدسة (A). الشكل (2) : النقاط البؤرية الاولية والثانوية للعدسات تكوين الصور (Image Formation) كما نوهنا سابقا في الفصل السابق على اهمية وظيفة تكوين الصور في السطح الكروي ، وهذا الكلام ممهدا لدور العدسة في هذا الامر لكونها تتالف من سطح كروي واحد او سطحين ، فمن خلال انتقال الضوء الصادر من الجسم ومروره خلال العدسة وانكساره ( اي تغيير اتجاهه الاصلي) الى الوسط في الطرف الثاني يحدث تقاطع للاشعة المنكسرة وبالتالي تتكون صورة للجسم لها صفات معينة تحدد من خلال طريقتين : طريقة الرسم (graphical method) التي اشرنا اليها في الفصل السابق ولا داعي لتكرارها هنا ، والطريقة الرياضية (mathematical method) التي من خلالها اشتقت العلاقة الرياضية الخاصة بتكوين الصور في العدسات التي تسمى صيغة كاوس للعدسات. صيغة كاوس للعدسات (Gauss Lenses Formula) يمكن إيجاد صفات الصورة المتكونة في العدسات رياضيا من خلال صيغة رياضية تسمى صيغة كاوس للعدسات (Gauss lenses Formula) وهي معادلة مشتقة من قانون سنيل وتطبيقه على السطح الكروي ومعالجته هندسيا من خلال حساب زاوية السقوط والانكسار ومعاملات الانكسار للوسطين ، تتمثل صيغة كاوس بالمعادلة التالية: 1/s+1/s'=1/f ……(1) حيث يمثل (s) بعد الجسم عن مركز العدسة ، (s') بعد الصورة عن مركز العدسة . نلاحظ هنا ان معاملات الانكسار للوسطين المحيطين بالعدسة غير موجودة في المعادلة (1) على اعتبار انهما فراغ (أو هواء) في أغلب الأحيان فلذا استعاض عن معاملات الانكسار لهما بالعدد واحد . ممكن استخدام صورة اخرى للمعادلة (1) لتعيين بعد الصورة لكونه المطلوب غالبا وكما يلي: s^'=(s*f)/(s-f) ……(2) التكبير الجانبي (Lateral Magnification) يعرف التكبير الجانبي للعدسة (m) بانه النسبة بين البعد المستعرض للصورة (y') الى البعد المستعرض للجسم (y) ، حسب المعادلة : m=y'/y=-s'/s ……(3) قدرة العدسة (Power of Lens) تتمثل قدرة العدسة (P) في قابلية العدسة على تجميع (converging) او تفريق (diverging) الاشعة الضوئية الساقطة عليها ، وتحسب القدرة من خلال صيغة كاوس ايضا مع مراعاة استخدام الابعاد بالامتار (meter) لتظهر قيمة القدرة بوحدات خاصة تسمى الديوبيتر(Diopeter) ، وكما موضح في المعادلة : P=1/s+1/s'=1/f ……(4) صيغة صانعي العدسات (Lens Makers Formula) هناك صيغة خاصة للعدسات تربط معامل انكسار العدسة مع انصاف اقطار التكور لسطحيها مع البعد البؤري تعرف بصيغة صانعي العدسات ، وهي صيغة مهمة جدا لعملية التصميم البصري لكونها تتعلق بنوع مادة العدسة من خلال معامل انكسارها ، وشكل العدسة من خلال انصاف اقطار تكور سطحيها ، وبالتالي معرفة هوية العدسة من خلال البعد البؤري . الشكل الرياضي لصيغة صانعي العدسات هو : 1/f=(n-1)( 1/r_1 - 1/r_2 ) ……(5) حيث تمثل (r2 , r1) انصاف اقطار تكور وجهي العدسة الاول والثاني على الترتيب . اصطلاح الإشارات (convention of signs) ان الطريقة الهندسية المتبعة لمعرفة صفات الصورة في العدسة يجب فيها مراعاة اتجاه انتشار الاشعة الضوئية وموقع الجسم والصورة ونوع العدسة (لامة او مفرقة) ، لكي تتحقق النتائج الحسابية الصحيحة من خلال تطبيقها في صيغة كاوس ، فلذلك يجب الاتفاق على مجموعة فقرات تخص الاشارات الخاصة بالصيغة وكما يلي : يرسم مسار الأشعة الضوئية من اليسار الى اليمين دائما . اذا كان الجسم يقع على يسار العدسة يعتبر الجسم حقيقي وبعده موجب (s +) ، واذا كان الجسم على يمين العدسة يعتبر الجسم خيالي وبعده سالب (s -) . اذا كانت الصورة تقع على يمين العدسة تعتبر الصورة حقيقية وبعدها موجب (s' +) ، واذا كانت الصورة على يسار العدسة تعتبر الصورة خيالية وبعدها سالب (s' -) . يعتبر البعد البؤري كمية موجبة (f +) للعدسة اللامة (converging lens)، ويعتبر البعد البؤري كمية سالبة (f -) للعدسة المفرقة (diverging lens) . إشارة أنصاف أقطار التكور لوجهي العدسة (r2 , r1) توضع حسب شكلها عند مواجهة الأشعة الساقطة عليها ( من اليسار الى اليمين) . تختلف صفات الصورة المتكونة في العدسة حسب نوع العدسة ونوع الوسط المحيط بها ، وكذلك حسب بعد الجسم عن العدسة . وكما ذكرنا في الفصل السابق يعتبر في صفات الصورة المتكونة أربعة أمور هي: موقع الصورة (image position)، ويحسب من خلال قيمة (s') هل الصورة حقيقية ام خيالية (real or virtual) ، ويحسب من خلال إشارة (s') هل الصورة مكبرة ام مصغرة (magnified or minified) ، ويحسب من خلال قيمة (m) هل الصورة معتدلة ام مقلوبة (erect or inversed) ، ويحسب من خلال إشارة (m) لكن هناك بعض النقاط المهمة تتعلق بنوع الصورة المتكونة يجب مراعاتها هي: الصورة الحقيقية دائما مقلوبة والصورة الخيالية دائما معتدلة . العدسة المفرقة دائما تكون صورة خيالية بغض النظر عن موقع الجسم . العدسة اللامة تعطي صورة خيالية اذا كان الجسم واقع بين البؤرة والعدسة اي (s < f) ، وتعطي صورة حقيقية اذا كان الجسم ابعد من البؤرة (s > f) ، ولا تتكون صورة اذا كان الجسم واقع في البؤرة اي (s = f) ويمكن التعبير عن الحالة الثالثة بان الصورة واقعة في المالانهاية . العدسة المركبة (Compound Lens) ان اكثر الاجهزة البصرية تستخدم اكثر من عدسة للحصول على وظيفة مثلى للجهاز مثل المقراب (التلسكوب) والمجهر ، فلذلك تكوين الصور عند استخدام عدستين او اكثر لها نفس المحور في الجهاز البصري يتطلب تطبيق رياضي خاص يتمثل بصيغة كاوس للعدسة المركبة (في حالة استخدام عدستين فقط) كما في الشكل (3) : 1/f=1/f_1 +1/f_2 -d/(f_1 f_2 ) ……(6) حيث (f2 , f1) يمثل البعد البؤري للعدسة الاولى والثانية على الترتيب ، (f) يمثل البعد البؤري المكافئ للعدسة المركبة ،(d) تمثل المسافة بين العدستين . بينما تجري نفس إجراءات تكوين الصورة بطريقة الرسم على العدسة المركبة مع مراعاة الانكسار في اكثر من عدسة . الشكل (3) : العدسة المركبة صيغة نيوتن للعدسات (Newton's Formula for Lenses) هناك صيغة خاصة تربط البعد البؤري للعدسة مع ابعادها البصرية التي تحسب من نقطتي البؤرة الاولية والثانوية ، بينما صيغة كاوس تحسب الابعاد البصرية من مركز العدسة . على اعتبار تساوي البعد البؤري في جانبي العدسة فيكون التمثيل الرياضي لصيغة نيوتن هو : f=√(x* x^' ) ……(7) m=-f/x=-x'/f ……(8) حيث يمثل (x) المسافة من الجسم الى البؤرة الاولية ، (x') المسافة من الصورة الى البؤرة الثانوية كما في الشكل (4) . الشكل (4) : الابعاد البصرية لصيغة نيوتن للعدسات العدسات السميكة (Thick Lenses) عندما يكون سمك العدسة (d) كبير نسبيا بالقياس الى بعدها البؤري تسمى حينئذ بالعدسة السميكة ، ويجب عندها الاخذ بنظر الاعتبار سمكها في كل العلاقات الرياضية الخاصة بالعدسة . ممكن معاملة العدسة المركبة كعدسة سميكة يكون سمكها المسافة بين العدسات المكونة لها. نعتبر معامل انكسار الوسط على يسار العدسة السميكة (n) ومعامل انكسار وسط العدسة (n') ومعامل انكسار الوسط على يمين العدسة (n") ، فيكون كل الرموز الاخرى تحمل دلالات تشير الى موقعها في هذه الاوساط الثلاثة وكما يلي. هناك نقطتان مرجعيتان في العدسة السميكة تسمى النقطة الاساسية الاولية (H) والثانوية (H") (primary and secondary principal points) ، تحسب من خلالها ابعاد الجسم والصورة والبعد البؤري كما في الشكل (5) . لايجاد موقع النقطة الاساسية نستخدم تعريف نقطة البؤرة ، فاذا سقطت اشعة موازية للمحور (جسم في المالانهاية) على العدسة فستتجمع في نقطة البؤرة الثانوية (F'') (الشكل (5-b)) فيكون نقطة تلاقي الشعاع الساقط مع الشعاع المنكسر في المستوي الاساسي الثانوي (secondary principal plane) ، ونقطة تقاطع هذا المستوي مع المحور البصري تمثل النقطة الاساسية الثانوية ((H" ، وبنفس الطريقة يمكن ايجاد موقع النقطة الاساسية الاولية (H) عن طريق استخدام اشعة صادرة من البؤرة الاولية فتسير بعد الانكسار موازية للمحور البصري (الشكل (5-a)) ، فيكون نقطة تلاقي الشعاع الساقط مع الشعاع المنكسر في المستوي الاساسي الاولي (primary principal plane) ، ونقطة تقاطع هذا المستوي مع المحور البصري تمثل النقطة الاساسية الاولية ((H . الشكل (5) العدسة السميكة يحسب البعد البؤري الاولي للعدسة السميكة (f) من نقطة البؤرة الاولية (F) الى النقطة الاساسية الاولية (H) ، وكذلك يحسب بعد الجسم عن طريق موقعه من النقطة الاساسية الاولية (H) . ويحسب البعد البؤري الثانوي للعدسة السميكة (" f) من نقطة البؤرة الثانوية (F") الى النقطة الاساسية الثانوية (H") ، وكذلك يحسب بعد الصورة عن طريق موقعه من النقطة الاساسية الثانوية (H") . تمتلك العدسة السميكة نقطتان أساسيتان وبالتالي مستويان أساسيان يختلف موقعهما حسب نوع العدسة ، فيمكن ان تكون النقطتان داخل العدسة (العدسة محدبة الوجهين) ، أو احاهما على حافة العدسة (العدسة نوع مستوية - محدبة) ، أو كلا النقطتين خارج العدسة (العدسة الهلالية) كما موضح في الشكل (6). الشكل (6) : موقع النقاط الاساسية بالنسبة لانواع العدسات السميكة صيغة كاوس للعدسات السميكة (Gauss Formula for Thick Lenses) هناك مجموعة من العلاقات الرياضية خاصة بالعدسات السميكة وضعها العالم كاوس ، تربط الابعاد البصرية المتعلقة بالعدسة مع بعضها ، مع الاخذ بنظر الاعتبار استخدام ثلاثة اوساط مختلفة (يسار وداخل ويمبن العدسة) ، وهذه العلاقات هي : n/f=n^'/f_1'+n^''/(f_2^'' )-(dn^'')/(f_1^' f_2^'' )=n^''/f^'' ……(9) A_1 F=-f(1-d/(f_2^' )) ……(10) A_2 F'' =+f''(1-d/(f_1^' )) ■(& ……(11)) A_1 H=+f d/(f_(2 )^' ) ……(12) A_2 H''=-f'' d/(f_1^' ) ■(& ……(13)) حيث يشير الرقم السفلي للرموز في المعادلات اعلاه (كمثال f1 ,f2) الى السطح الاول والثاني للعدسة على الترتيب ، بينما الرمز العلوي (dash ' ") الى موقعه بالنسبة للأوساط الثلاثة . فيمثل (f1' ) البعد البؤري الثانوي للسطح الاول للعدسة ، (f2") يمثل البعد البؤري الثانوي للسطح الثاني للعدسة ، (f" , f) البعد البؤري الاولي والثانوي للعدسة على الترتيب . تمثل المعادلة (9) معادلة البعد البؤري للعدسة السميكة ، والمعادلتين (11, 10) تحسب موقع البؤرة الاولية والثانوية على الترتيب ، والمعادلتين (13,12) تحسب موقع النقطة الاساسية الاولية والثانوية على الترتيب . مسائل الفصل الرابع (Problems) جسم ارتفاعه (5 cm) موضوع على بعد (20 cm) امام عدسة مفرقة لها بعد بؤري (5 cm) . احسب : (a). قدرة العدسة ، (b). صفات الصورة المتكونة ، (c) ارتفاع الصورة. a) P=1/f=1/(-5*10^(-2) )=-20 D b) s^'=sf/(s-f)=(20*(-5))/(20+5)=-4 cm m=-s^'/s=-(-4)/20=0.2 الصورة خيالية واقعة على يسار العدسة بمسافة (4 cm) ، والصورة مصغرة معتدلة. c) m=y'/y ⇒ y^'=my=0.2*5=1 cm عدسة (محدبة مستوية) مصنوعة من زجاج معامل انكساره (1.7) . احسب انصاف اقطار التكور للعدسة التي تعطي قدرة للعدسة مقدارها (+5 D) . بما ان العدسة (محدبة مسوية) فيكون نصف قطر تكور احد سطحيها (r1=∞) P=(n-1)(1/r_1 -1/r_2 ) 5=(1.7-1)(1/∞-1/r_2 ) ⇒ r_2=14.2 cm عدستان البعد البؤري لهما (f1=+8 cm) ، (f2=-12 cm) وضعتا على محور واحد بمسافة (6 cm) . جسم ارتفاعه (3 cm) موضوع على مسافة (24 cm) امام العدسة الاولى . جد : (a). صفات الصورة النهائية ، (b). ارتفاع الصورة النهائية. a) 1/s_1 +1/(s_1^' )=1/f_1 s_1^'=(s_1 f_1)/(s_1-f_1 )=(24*8)/(24-8)=192/16=12 cm نفرض ان الصورة المتكونة في العدسة الاولى هي جسم بالنسبة للعدسة الثانية موقعها يحسب من العلاقة : s_2=d-s_1^'=6-12=-6 cm s_2^'=(s_2 f_2)/(s_2-f_2 )=((-6)*(-12))/(-6+12)=72/6=12 cm m=m_1*m_2=(-〖s^'〗_1/s_1 )*(-〖s^'〗_2/s_2 )=(-12/24)*(-12/(-6))=-1 اذن الصورة النهائية حقيقية تقع على يمين العدسة الثانية بمسافة (12 cm) ، والصورة مقلوبة وبنفس حجم الجسم . b) m=y^'/y ⇒ -1=y^'/3 ⇒ y^'=|-3|=3cm وضعت عدسة لامة بعدها البؤري (6 cm) بحيث كانت على بعد (10 cm) من الصورة النهائية اين يجب وضع عدسة مفرقة مقدار بعدها البؤري (12 cm) من العدسة اللامة عندما يكون الجسم على بعد (24 cm) على يسار العدسة اللامة ؟ 1/s_1 +1/(s_1^' )=1/f_1 ⇒ 1/24+1/(s_1^' )=1/6 ⇒ s_1^'=8 cm s_2=d-s_1^'=d-8 s_2^'=10-d 1/s_2 +1/(s_2^' )=1/f_2 ⇒ 1/(d-8)+1/(10-d)=1/(-12) ((10-d)+(d-8))/(d-8)(10-d) =1/(-12) 2/(d-8)(10-d) =1/(-12) 1/(d^2-18d+80)=1/24 d^2-18d+80=24 d^2-18d+56=0 (d-14)(10-4)=0 ∴d=14 cm or d=4 cm جسم موضوع على مسافة (1.4 m) من شاشة . ما هو البعد البؤري المناسب لعدسة يجب وضعها بين الجسم والشاشة لتكوين صورة حقيقية له مقلوبة ومكبرة بمقدار ست مرات ؟ m=-s^'/s -6=-(1.4-s)/s ⇒ -6s=-1.4+s ⇒ s=1.4/7=0.2 m s^'=1.4-s=1.4-0.2=1.2 m 1/s+1/s^' =1/f ⇒ 1/0.2+1/1.2=1/f ⇒ f=0.17 m وضع جسم على يسار عدسة لامة بمسافة (30 cm) ، فإذا كان البعد البؤري للعدسة (20 cm) . اوجد صفات الصورة المتكونة لهذا الجسم باستخدام صيغة نيوتن . f=√(x* x^' ) 20=√(10*x^' ) ⇒ x^'=40 cm ∴image distance from lens=f+x^'=20+40=60 cm m=-f/x=-20/10=-2 اذن الصورة حقيقية تقع على يمين العدسة بمسافة (60 cm) ، كذلك الصورة مقلوبة ومكبرة مرتين . عدسة محدبة الوجهين ومتساوية التحدب (4 cm) ، معامل انكسار الزجاج لها (1.8) وسمكها (3.6 cm) . احسب: (a). البعد البؤري الاولي والثانوي للعدسة ، (b). موقع نقاط البؤرة الاولية والثانوية ، (c). موقع النقاط الاساسية الاولية والثانوية. a) n^'/(f_1^' )=n/f_1 =(n^'-n)/r_1 =(1.8-1)/4=0.2 f_1=1/0.2=5 cm , f_1^'=1.8/0.2=9 cm n^''/(f_2^'' )=n'/(f_2^' )=(n^''-n')/r_2 =(1-1.8)/(-4)=0.2 〖 f〗_2^'=1.8/0.2=9 cm , f_2^''=1/0.2=5 cm n^''/f''=n/f=n^'/(f_1^' )+n^''/(f_2^'' )-(dn^'')/(f_1^' f_2^'' )=1.8/9+1/5-3.6/(9*5)=0.2+0.2-2/25=8/25 f=f_2^''=25/8=3.125 cm b) A_1 F=-f(1-d/(f_2^' ))=-3.125(1-3.6/9)=-1.875 cm 〖 A〗_2 F^''=f^'' (1-d/(f_1^' ))=3.125(1-3.6/9)=1.875 cm c) A_1 H= f(d/(f_2^' ))=3.125(3.6/9)=1.25 cm 〖 A〗_2 H^''=- f^'' (d/(f_1^' ))=-3.125(3.6/9)=-1.25 cm عدسة هلالية سالبة سمكها (4.8 cm) ومعامل انكسارها (1.6) لها انصاف اقطار تكور (r1=+6 cm) ، (r2= +5 cm) . اذا كان هناك سائل معامل انكساره (1.2) بتماس مع السطح الاول للعدسة ، وسائل اخر معامل انكساره (2) بتماس مع السطح الثاني للعدسة . احسب: (a). البعد البؤري الاولي والثانوي للعدسة ، (b). موقع نقاط البؤرة الاولية والثانوية ، (c). موقع النقاط الاساسية الاولية والثانوية. a) n^'/(f_1^' )=n/f_1 =(n^'-n)/r_1 =(1.6-1.2)/6=0.067 f_1=1.2/0.067=18 cm , f_1^'=1.6/0.067=24 cm n^''/(f_2^'' )=n'/(f_2^' )=(n^''-n')/r_2 =(2-1.6)/5=0.08 〖 f〗_2^'=1.6/0.08=20 cm , f_2^''=2/0.08=25 cm n^''/f''=n/f=n^'/(f_1^' )+n^''/(f_2^'' )-(dn^'')/(f_1^' f_2^'' )=1.6/24+2/25-(4.8*2)/(24*25)=0.131 f=1.2/0.131=9.16 cm , f''=2/0.131=15.27 cm b) A_1 F=-f(1-d/(f_2^' ))=-9.16(1-4.8/20)=-6.96 cm 〖 A〗_2 F^''=f^'' (1-d/(f_1^' ))=15.3(1-4.8/24)=12.24 cm c)〖 A〗_1 H= f(d/(f_2^' ))=9.16(4.8/20)=2.2 cm 〖 A〗_2 H^''=- f^'' (d/(f_1^' ))=-15.3(4.8/24)=-

Publication Date
Wed Apr 01 2020
Journal Name
Al-rafidain Journal For Sport Sciences
The Effectiveness of UsingflippedclassroombyQuick Response Codes In Learning Someofskills In Artistic Gymnastics for men
...Show More Authors

The study aimed to prepare quick response codes to learn some of the technical skills of the second graders in the Faculty of Physical Education and Sports Sciences. The experimental method was used in the design of the experimental and control experimental and control groups. The research sample was represented by second-graders in the College of Physical Education and Sports Sciences / University of Baghdad, and by lot, the second division (a) was chosen to represent the experimental group that applied the inverse method using the QR code, and the second division (g) to represent the control group and applied the traditional method. (10) Students per group. After the tribal tests, his main experiment was carried out for 10 weeks with one

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of The College Of Education For Women
The principals and techniques of geography text book for fourth secondary: The principals and techniques of geography text book for fourth secondary
...Show More Authors

Abstract
The curriculum is the major effective tool in achieving the goals of
education and society.

Many countries that want to reach the forefront of developed countries
through their curriculum have realized this fact. School text book, the
application assessment for knowing the rang of success or fail of this text
book in achieving the general aims. therefore this study aims at assessing the
principals and techniques of geography text book for fourth secondary class of
literary studying from the teachers point of view according to the fields of the
book, style of material, technical arrangement of the material, ethnical
arrangement the language of the book, style of the material, technical
arrang

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 15 2021
Journal Name
مجلة العلوم القانونية والسياسية
الحماية الجنائية لأمن الدولة الداخلي في ظل حروب الجيل الرابع
...Show More Authors

تناول البحث موضوعاً شديد الأهمية وهو الأمن الاجتماعي منظور اليه في سياق الحماية الجنائية لأمن الدولة والتحديات التي يتعرض لها بعد حصول تغيير حاسم في أساليب الحرب. كما يقدم البحث تقسيماً مختلفاً لأجيال الحروب نقتصر على اربعة منها استناداً إلى التغيير في أهداف الحرب الاستراتيجية وليس إلى مجرد وسائل ارتكابها لان هذه الوسائل لا تصلح لوصف التغييرات الحقيقية في أنماط الحروب والاهداف التي تسعى إلى تحقيقها. ويؤكد

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
On Cohomology Groups of Four-Dimensional Nilpotent Associative Algebras
...Show More Authors

The study of cohomology groups is one of the most intensive and exciting researches that arises from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which plays a rigorous role in the geometric classification of associative algebras. This work focuses on the applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero and degree one of nilpotent associative algebras in dimension four are described in matrix form.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jan 03 2010
Journal Name
Journal Of Educational And Psychological Researches
اثر الاسئلة السابرة في تحصيل طلاب الصف الرابع العام لمادة التاريخ
...Show More Authors

The importance of teaching methods and procedures comes from the nature and significance of the questions raised inside the classroom. That is, because questions, in fact, are the means of communication and interaction in the class situation. Therefore they are considered as indispensible elements in any teaching approach. Furthermore, it is noticeable that the majority of teachers fail in using them, for questions are often casted spontaneously and without pre-planning. Hence, a delay may occur in realizing the pre-set objectives, and let alone the dominance of stereotyped questions, especially when the teachers focus on a type of question which can be directly answered from the text-book.

      &nb

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 07 2022
Journal Name
Journal Of Educational And Psychological Researches
The effect of using cognitive strategies on mathematical competence among Fourth Scientific students
...Show More Authors

The research aims to find out the impact of cognitive strategies in the mathematical competence of the students of the fourth scientific in the preparatory mahmoudiyah in the Directorate General of The Education of Karkh 2. A post-test of the mathematical competence prepared by (Jassim, 2018) was applied to the sample of (65) students, distributed into two groups of (33) students as experimental group and (32) students as a control group. The results found there are significant differences between the experimental group and the control group in testing the mathematical competence of students for the experimental group.

View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Educational And Psychological Researches
تقويم اسئلة كتاب الكيمياء للصف الرابع العلمي وفقا لتصنيف جالاجر وآشنر
...Show More Authors

The research aims to evaluate the current book chemistry fourth grade scientific questions on the classification according to Gallagher And Aschner levels of its four reflexion A cognitive thinking, thinking Convergent , Divergent thinking and osteopathic thinking and evaluating those questions in terms of standards of honesty, inclusiveness and objectivity . The research sample included a book of chemistry for fourth grade scientific for the academic year  (2016 - 2017), the same research community and the number of sub - prime questions amounted to (354) Question distributed to the chapters of the book adult (6) chapters, the researchers ends of chapters by classification questions by finding the relative weight of the are

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 29 2019
Journal Name
Journal Of The College Of Education For Women
Thinking skills and its Relationship to Some Variables to Four Grade Primary School Pupils with Slow Learning Abilities
...Show More Authors

The problem of slow learning in primary schools’ pupils is not a local or private one. It is also not related to a certain society other than others or has any relation to a particular culture, it is rather an international problem of global nature. It is one of the well-recognized issues in education field. Additionally, it is regarded as one of the old difficulties to which ancient people gave attention. It is discovered through the process of observing human behaviour and attempting to explain and predict it.
Through the work of the two researchers via frequent visits to primary schools that include special classes for slow learning pupils, in addition to the fact that one of the researcher has a child with slow learning issue, t

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of Educational And Psychological Researches
The effect of 5555 strategy on reading comprehension among 4th preparatory students
...Show More Authors

The effect of 5555 strategy on reading comprehension among 4th preparatory students Assist. Prof. Dr. Hassan Khilbas Hammadi College of Education Ibn Rushd – The University of Baghdad Assistant Lecturer. Waleed Khaled Talib Directorate – General For Education Province Of AL - Anbar The purpose of study is to identify the effect of 5555 strategy on reading comprehension among 4th preparatory students. To do this, null hypothesis was postulated. The author hypothesize that there is no a statistically significant difference at (0.05) level between experimental group's scores who study reading comprehension subject following the 5555 strategy and control group's scores who study the same subject following the traditional method in readin

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Tobit Quantile Regression Model Using Four Level Prior Distributions
...Show More Authors

Abstract:

      In this research we discussed the parameter estimation and variable selection in Tobit quantile regression model in present of multicollinearity problem. We used elastic net technique as an important technique for dealing with both multicollinearity and variable selection. Depending on the data we proposed Bayesian Tobit hierarchical model with four level prior distributions . We assumed both tuning parameter are random variable and estimated them with the other unknown parameter in the model .Simulation study was used for explain the efficiency of the proposed method and then we compared our approach with (Alhamzwi 2014 & standard QR) .The result illustrated that our approach

... Show More
View Publication Preview PDF
Crossref