The present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite size in the range of 27–52 nm. The highest solar absorptance (∼85.2%) and the lowest thermal emittance (∼4.45%) along with the highest values of both hardness and the Young’s modulus (19.1 GPa and 104 GPa, respectively) were obtained for the film annealed at 600 °C. In addition, the synthesized nickel-cobalt oxide thin films show band gap energies in the range of 1.15–1.38 eV and excellent thermal stability at higher temperatures, which makes them interesting candidates for solar absorbing applications.
During of Experimental result of this work , we found that the change of electrical conductivity proprieties of tin dioxide with the change of gas concentration at temperatures 260oC and 360oC after treatment by photons rays have similar character after treatment isothermally. We found that intensive short duration impulse annealing during the fractions of a second leads to crystallization of the films and to the high values of its gas sensitivity.
In this research ,Undoped Nio and 1%Li doped Nio thin films were deposited utilizing chemical spray pyrolysis on the glass substrates heated (450C). The effects of non-thermal plasma on the structural and optical properties were studied. XRD measurement shows that Nio and Nio:1%Li films were found to be polycrystalline and have cubic structure with a preferred orientation (111). Decreased crystal size after exposure especially at (7) sec. AFM data indicate that the surface roughness average and (RMS) values of the prepared doped films are increasing after exposure to plasma, the transmittance increases after doped samples exposure to plasma, it was found that the energy gap value decreased when doped samples exposure to plasma, also, thickn
... Show More(Cu1-x,Agx)2ZnSnSe4 alloys have been fabricated with different Ag content(x=0, 0.1, and 0.2) successfully from their elements. Thin films of these alloys have been deposited on coring glass substrate at room temperature by thermal evaporation technique under vacuum of 10-5Torr with thickness of 800nm and deposition rate of 0.53 nm/sec. Later, films have been annealed in vacuum at (373, and 473)K, for one hour. The crystal structure of fabricated alloys and as deposited thin films had been examined by XRD analysis, which confirms the formation of tetragonal phase in [112] direction, and no secondary phases are founded. The shifting of main polycrystalline peak (112) to lower Bragg’s angle as compared to Cu2ZnSnSe4 angle refers to incorpora
... Show MoreTin dioxide doped silver oxide thin films with different x content (0, 0.03, 0.05, 0.07) have been prepared by pulse laser deposition technique (PLD) at room temperatures (RT). The effect of doping concentration on the structural and electrical properties of the films were studied. Atomic Force Measurement (AFM) measurements found that the average value of grain size for all films at RT decrease with increasing of AgO content. While an average roughness values increase with increasing x content. The electrical properties of these films were studied with different x content. The D.C conductivity for all films increases with increasing x content. Also, it found that activation energies decrease with increasing of AgO content for all films.
... Show MoreThermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3
A novel technique for nanoparticles with a chemical method and impact for resistance bacteria methicillin-resistant Staphylococcus aureus (MRSA), UV-visible analysis confirmed the by Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray (EDX), Scanning electron microscope (SEM) and X-ray diffraction pattern estimation antimicrobial excellent antibacterial activity against MRSA (with zone of inhibition of 11 ± 02 mm , 9 ± 01 mm,8 ± 03 mm and 7.5 ± 02 mm and 6.5 ± 02 mm) at different concentrations (0.5 ,0.25, 0.125, 0.0625, 0.03125) mg/ml while good activity was 16 ± 03 mm at 17 ± 02 mm zone at 0.25, 0.125 mg/mL, respectively. The increase in microorganism resistance to antibiotics a couple of have caused
... Show More