The present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite size in the range of 27–52 nm. The highest solar absorptance (∼85.2%) and the lowest thermal emittance (∼4.45%) along with the highest values of both hardness and the Young’s modulus (19.1 GPa and 104 GPa, respectively) were obtained for the film annealed at 600 °C. In addition, the synthesized nickel-cobalt oxide thin films show band gap energies in the range of 1.15–1.38 eV and excellent thermal stability at higher temperatures, which makes them interesting candidates for solar absorbing applications.
Pure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra
In this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m
In this research an experimental study has done for testing the thermal performance of selective surfaces used in solar collectors for substrate of iron, galvanized iron and aluminum which are commercially available. The coating process for the samples has done in two ways, the electroplating and the chemical spray pyrolysis. The results of the thermal performance test of these samples are comparing with the thermal performance of a sample without paint and other paint with black paint without shines commercially available. For the electroplated samples, the performance study has done for different immersion time in plating bath, the
distance between electrical poles, the current density, and area ratio of the sample plated area to
In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.
The electrical properties of thin film interdigital metalÂ
phthalocyanine - metal devices have been studied with regard to purity and electrode material . Devices utilising phthalocyanines ( H2 Pc ,
NiPc and CuPc) films with Au, Ag , Cu ' In and AI electrodes have been prepared with Pc layers fabricated from both as - supplied Pc powder and entrainer - subeimed material . The results indicate that
sublimed phthalocyanine with gold electrodes offers the best material
combination with regard to linearity , reversibility and reproducibility. Measurements of current &nbs
... Show MoreThin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV
... Show MoreThe thermoelectric power (S) of thermal evaporated a-InAs films
were measured in the temperature rang (303-408) K.
These films were prepared at different thickness (250,350,450) nm and treated at different annealing temperatures (303,373,423,473,523) K.
The behaviour of the thermoelectric power studies of these films
as a function of thickness and annealing temperature showed the thermoelectric power an increasing trend with annealing temperature
,whereas it decreases as the film thickness increases.
Chalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .
In this research, we studied the structural and optical properties of In2O3 films which prepared by chemical spray pyrolysis method on the glass substrate heated 400 . The effect of annealing temperature 100 for one hour on theses properties are studied. The result of Xray diffraction showed the prepared films were polycrystalline and orientation was (222) before and after annealing, optical properties study for prepared films by using (UV-VIS-NIR) spectrophotometer in the wave length range (300-1100)nm, We found the transmission increases after annealing to 90%. Sensitivity measurement of In2O3 films for gas (CO) and optical detector showed that after annealing at temperature 100 .