BACKGROUND: Nebulized Salbutamol have great advantages for patients with respiratory problems by depositing drugs directly to the lungs, inspite of reported adverse metabolic effects on different electrolytes and glucose heamostasis of patients.AIM OF STUDY: To evaluate the effect of nebulized salbutamol used in the management of patients with asthma who have normal serum potassium and blood glucose levels. in the emergency department after 30 and 60 minutes of administration and to find out if these results are of clinical importance that should be taken in consideration when treating patients especially those with abnormal glucose hemostasis or electrolyte disturbance. PATIENTS & METHODS: The study is a prospective follow up study conducted in Emergency Department of Baghdad Teaching Hospital through the period from 1st of April, 2017, to 31st of January, 2018 on a sample of 100 patients. After administration of nebulized salbutamol, the Potassium and Glucose levels of patients were assessed in three periods; baseline, after 30 minutes and after one hour.RESULTS: The potassium mean was significantly decreased after 1 hour of nebulizer administration (p<0.001). The random blood sugar mean was significantly increased after 1 hour of nebulizer administration (p<0.001). The potassium level was significantly decreased one hour after nebulizer administration for patients with negative steroids history (p=0.03), while no significant difference in potassium level was observed for patients with positive steroids history.CONCLUSIONS: The nebulizer applying salbutamol has a profound effect in lowering the Potassium level and increasing blood glucose level after 60 minutes of administration.
Calcium carbonate is predominantly present in aqueous systems, which is
commonly used in industrial processes. It has inverse solubility characteristics
resulting in the deposition of scale on heat transfer surface. This paper focuses on
developing methods for inhibition of calcium carbonate scale formation in cooling
tower and air cooler system where scaling can cause serious problems, ZnCl 2 and ZnI
2 has been investigated as scale inhibitor on AISI 316 and 304. ZnCl 2 were more
effective than ZnI 2 in both systems, and AISI 316 show more receptivity to the
chlorides salt compared to AISI 304. The inhibitors were more effective in cooling
tower than air cooler system. AISI 316 show more constant inhibition effic
Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreA remarkable correlation between chaotic systems and cryptography has been established with sensitivity to initial states, unpredictability, and complex behaviors. In one development, stages of a chaotic stream cipher are applied to a discrete chaotic dynamic system for the generation of pseudorandom bits. Some of these generators are based on 1D chaotic map and others on 2D ones. In the current study, a pseudorandom bit generator (PRBG) based on a new 2D chaotic logistic map is proposed that runs side-by-side and commences from random independent initial states. The structure of the proposed model consists of the three components of a mouse input device, the proposed 2D chaotic system, and an initial permutation (IP) table. Statist
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreSustainable vegetative management plays a significant role in improving soil quality in degraded agricultural landscapes by enhancing soil microbial biomass. This study investigated the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), and agroforestry buffers (ABs) on soil microbial biomass and soil organic C (SOC) compared with continuous corn (
The risk of significant concern is resistance to antibiotics for public health. The alternative treatment of metallic nanoparticles (NPs), such as heavy metals, effects on antibiotic resistance bacteria with different types of antibiotics of - impossible to treat using noval eco-friendly synthesis technique nanoparticles copper oxide (CuO NPs) preparation from S. epidermidis showed remarkable antimicrobial activity against S.aureus Minimum inhibitory concentra range (16,32,64,256,512) µg/ml via well diffusion method in vitro, discover those concentrations effected in those bacteria and the best concentration is 64 µg/ml, characterization CuO NPs to prove this included atomic force microscope, UV, X-ray Diffraction and TEM, and ant
... Show MoreProtecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show More