Abstract: Colloidal gold nanoparticles (ringworm Palm or in the form of paper willow) have been prepared from HAuCl4 containing aqueous solution by hot chemical reduction method. The colloidal gold nanoparticles were characterized by SEM, EDX, and UV-VIS absorption spectroscopy. It was found that the variation of reduction time from boiling point affects the size of the nanoparticles and also in chemical reduction approach the size of nanoparticles can be controlled by varying the amount of variation the volume of reductant material with respect to the volume of HAuCL4.
Titanium dioxide nanorods have been prepared by sol-gel template
method. The structural and surface morphology of the TiO2 nanorods was
investigated by X-ray diffraction (XRD) and atomic force microscopy
(AFM), it was found that the nanorods produced were anatase TiO2 phase.
The photocatalytic activity of the TiO2 nanorods was evaluated by the
photo degradation of methyl orange (MO). The relatively higher
degradation efficiency for MO (D%=78.2) was obtained after 6h of exposed
to UV irradiation.
Mixed Kirkuk and Sharki-Baghdad crude oils were distilled into narrow fractions. The range of these narrow fractions were 10oC, starting from IBP to 350oC. The total distillates from mixed Kirkuk and Sharki-Baghdad crude oils were 58.25 vol % and 44.65 vol %, respectively.The hydrocarbons compositions (paraffin, naphthene, aromatic) in light fractions starting from IBP to 250oC were determined by using PONA analysis method. The results show that the paraffin content decreases with increasing mid percent boiling point of the fraction, while the naphthene, and aromatic increase with the increase of mid percent boiling point of mixed Kirkuk and Sharki-Baghdad crude oils. Three groups of empirical equations were developed for the prediction
... Show MoreThe wave functions of converted harmonic-oscillator in local scaling transformations are employed to evaluate charge distributions and elastic charge electron scattering form structures for 6,7Li, 9Be, 14,15N and 16O nuclei. The nuclear shell-model was fulfilled using Warburton-Brown psd-shell (WBP) interaction with truncation in model space. Very good agreements with the experimental data were obtained for the aforementioned quantities.