In this paper further properties of the fuzzy complete a-fuzzy normed algebra have been introduced. Then we found the relation between the maximal ideals of fuzzy complete a-fuzzy normed algebra and the associated multiplicative linear function space. In this direction we proved that if is character on Z then ker is a maximal ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra then we prove that the structure, st(Z) is -fuzzy closed subset of fb(Z, ) when (Z, , , ) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.
In this article, we recalled different types of iterations as Mann, Ishikawa, Noor, CR-iteration and, Modified SP_iteration of quasi δ-contraction mappings, and we proved that all these iterations equivalent to approximate fixed points of δ-contraction mappings in Banach spaces.
We present the notion of bipolar fuzzy k-ideals with thresholds (
In these notes, our goal is to give some results on criterion for complex analytic map-germs by their tangent spaces with respect to -equivalence where is the module of complex analytic vector fields on .In addition, we give some results about -trivial analytic family, the direct product and direct sum of map-germs.
the research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
Let be any connected graph with vertices set and edges set . For any two distinct vertices and , the detour distance between and which is denoted by is a longest path between and in a graph . The detour polynomial of a connected graph is denoted by ; and is defined by . In this paper, the detour polynomial of the theta graph and the uniform theta graph will be computed.
A graph
is said to be singular if and only if its adjacency matrix is singular. A graph
is said to be bipartite graph if and only if we can write its vertex set as
, and each edge has exactly one end point in
and other end point in
. In this work, we will use graphic permutation to find the determinant of adjacency matrix of bipartite graph. After that, we will determine the conditions that the bipartite graph is singular or non-singular.
In this work, we present the notion of a multiplier on AT-algebra and investigate several properties. Also, some theorems and examples are discussed. The notions of the kernel and the image of multipliers are defined. After that, some propositions related to isotone and regular multipliers are proved. Finally, the Left and the Right derivations of the multiplier are obtained
Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show More