Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re
... Show MoreTo identify and explore the factors nurses perceive as influencing their knowledge acquisition in relation to diabetes care and its management in Saudi Arabia.
Diabetes continues to pose major healthcare challenges despite advances in diabetes management. Nurses have a crucial role in diabetes care, but diabetes knowledge deficits deter effective collaboration with other healthcare providers in educating patients about diabetes self‐management.
An exploratory descriptive qualitative design.
In this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t
... Show MoreThe rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreThe rapid advancements in wireless technology and digital electronics have led to the widespread adoption of compact, intelligent devices in various aspects of daily life. These advanced systems possess the capability to sense environmental changes, process data, and communicate seamlessly within interconnected networks. Typically, such devices integrate low-power radio transmitters and multiple smart sensors, hence enabling efficient functionality across wide ranges of applications. Alongside these technological developments, the concept of the IoT has emerged as a transformative paradigm, facilitating the interconnection of uniquely identifiable devices through internet-based networks. This paper aims to provide a comprehensive ex
... Show MoreFace recognition and identity verification are now critical components of current security and verification technology. The main objective of this review is to identify the most important deep learning techniques that have contributed to the improvement in the accuracy and reliability of facial recognition systems, as well as highlighting existing problems and potential future research areas. An extensive literature review was conducted with the assistance of leading scientific databases such as IEEE Xplore, ScienceDirect, and SpringerLink and covered studies from the period 2015 to 2024. The studies of interest were related to the application of deep neural networks, i.e., CNN, Siamese, and Transformer-based models, in face recogni
... Show MoreAbstract
This research aims to study human error effects in the banking risks in the private banks through the measurement and testing of human error effect in every kind of banking risks types and stand on the most closely associated with the risks in order to focus on them and make appropriate processors have with respect to and increase the availability of skills and expertise required to carry out banking operations of error-free manner.
Find dealt with human error in terms of meaning and understandable, classifications and types, causes and consequences and its approaches and theories. Also addressed placed banking risks in terms of meaning and concept, species and entr
... Show More