The traditional city suffers from the decline of the urban image due to urban development and homogeneity with the urban context of the city, and because of the lack of determinants governing the urban image, it is that the center of the city of traditional Kadhimiya suffers from a break in the urban image, Therefore, the research included how to build a distinctive urban image of the center of the traditional city of Kadhimiya and achieve the visual pleasure and comfort of the recipient and the urban image here means is an image not picture which are related to several aspects, including physical, social and psychological as well as the collective memory of individuals and their relationship with their environment and a sense of them and thus, interacting with it. The indicators of the research were drawn from the theoretical framework which is measured by the questionnaire to be applied to the study area. The research found that the compact city’s characteristics (high density, mixed-use, accessibility, proximity, public transportation directly influence the formation of the urban image through diversity, complexity, variability, and diversity of housing options and urban activities as a result of their impact on (identity, meaning, structure). The most important conclusions and recommendations were that the cognitive process of the urban image is linked to the collective memory, social and cultural values, customs, traditions, attention to the surrounding area of the shrine and its rehabilitation to fit the urban context and achieve visual enrichment and reinforce the sense of belonging to the city by building the urban image.
The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s
... Show MoreCryptography can be thought of as a toolbox, where potential attackers gain access to various computing resources and technologies to try to compute key values. In modern cryptography, the strength of the encryption algorithm is only determined by the size of the key. Therefore, our goal is to create a strong key value that has a minimum bit length that will be useful in light encryption. Using elliptic curve cryptography (ECC) with Rubik's cube and image density, the image colors are combined and distorted, and by using the Chaotic Logistics Map and Image Density with a secret key, the Rubik's cubes for the image are encrypted, obtaining a secure image against attacks. ECC itself is a powerful algorithm that generates a pair of p
... Show MoreMost of today’s techniques encrypt all of the image data, which consumes a tremendous amount of time and computational payload. This work introduces a selective image encryption technique that encrypts predetermined bulks of the original image data in order to reduce the encryption/decryption time and the
computational complexity of processing the huge image data. This technique is applying a compression algorithm based on Discrete Cosine Transform (DCT). Two approaches are implemented based on color space conversion as a preprocessing for the compression phases YCbCr and RGB, where the resultant compressed sequence is selectively encrypted using randomly generated combined secret key.
The results showed a significant reduct
This article presents a polynomial-based image compression scheme, which consists of using the color model (YUV) to represent color contents and using two-dimensional polynomial coding (first-order) with variable block size according to correlation between neighbor pixels. The residual part of the polynomial for all bands is analyzed into two parts, most important (big) part, and least important (small) parts. Due to the significant subjective importance of the big group; lossless compression (based on Run-Length spatial coding) is used to represent it. Furthermore, a lossy compression system scheme is utilized to approximately represent the small group; it is based on an error-limited adaptive coding system and using the transform codin
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreProtecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreThe rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in
... Show Moreسها علي حسين, هويدة إسماعيل إبراهيم, Journal of Physical Education, 2017 - Cited by 1
In this paper, an adaptive polynomial compression technique is introduced of hard and soft thresholding of transformed residual image that efficiently exploited both the spatial and frequency domains, where the technique starts by applying the polynomial coding in the spatial domain and then followed by the frequency domain of discrete wavelet transform (DWT) that utilized to decompose the residual image of hard and soft thresholding base. The results showed the improvement of adaptive techniques compared to the traditional polynomial coding technique.