In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show MoreIn this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
The Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi
... Show MoreIn this paper, a Monte Carlo Simulation technique is used to compare the performance of MLE and the standard Bayes estimators of the reliability function of the one parameter exponential distribution.Two types of loss functions are adopted, namely, squared error loss function (SELF) and modified square error loss function (MSELF) with informative and non- informative prior. The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators .
Radial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
Zirconia ceramic restoration (ZCR) has a higher fracture incidence rate than metal ceramic restoration. Different surface treatments were used to improve fracture performance of ZCR such as grit blasting (GB) by aluminium oxide powder. This type of surface treatment generate residual stresses on veneering ceramic causing crack initiation and ending with a fracture. In order to overcome the stress generated by GB, zirconia surface coating is used as a surface treatment to improve fracture resistance and to accommodate stresses along the ZCR layers. Fifty zirconia ceramic crowns were fabricated and divided according to the type of surface treatment into three groups; the first group is (ZG), involving 20 cores were coated with a mixture of pa
... Show MoreThe present study was designed to isolate the microbial community from oil-contaminated sites and other non-oil-contaminated sites which served as control samples in Kerbala city. In addition to test the effect of hydrocarbons on the growth of some types of bacteria. Bacterial genera and species were identified based on their growth on nutrient agar and blood agar as well as biochemical tests. According to the high bacterial growth rate on crude oil, 5 bacterial isolates were selected for further study. Growth of some identified bacteria in Minimal salt medium amended with hydrocarbon as the sole carbon source was investigated. Acinetobacter sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, P
... Show More