The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six different controllers are applied and compared for BPA in WT: type-1 fuzzy logic controller (T1-FLC), interval type-2 fuzzy logic controller (IT2-FLC), interval type-3 fuzzy logic controller (IT3-FLC), optimal hybrid type-1 fuzzy-PID controller (HT1-FPIDC), optimal hybrid type-2 fuzzy-PID controller (HT2-FPIDC), and optimal hybrid type-3 fuzzy-PID controller (HT3-FPIDC). The comparison between Mamdani and Sugeno fuzzy inference systems (FIS) has been applied to find the best inference system. Genetic Algorithm (GA) and Particle swarm optimization (PSO) are used to find the optimal tuning of PID parameters. The results of the 500-kw horizontal axis wind turbine show that Sugeno FIS has higher stability in output power generation than Mamdani FIS. Also, optimal HT3-FPIDC based on Mamdani FIS with PSO provides 19.74 % lower absolute summation error (ASE) than Sugeno FIS in optimal HT2-FLC with PSO and 39.03 % lower ASE than optimal HT1-FLC based on Sugeno FIS with PSO. Finally, the proposed optimal HT3-FPIDC based on PSO and Mamdani FIS provides the optimal results in terms of consistent output power generation at rated value.
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Assessment of annual wind energy potential for three selected sites in Iraq has been analyzed in the present work. The wind velocities data from August 2014 to July 2015 were collected from the website of Weather Underground Organization (WUO) at stations elevation (35m, 32m, and 17m) for Baghdad, Najaf, and Kut Al-Hai respectively. Extrapolation of stations elevation and wind velocities was used to estimate wind velocities at (60m, 90m, and 120m). The objectives are to analyze the wind speed data and assess the wind energy potential for wind energy applications. Computer code for MATLAB software has been developed to solve the mathematical model. The results are presented as a monthly and annual average for wind velocities, standard deviat
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MorePC-based controller is an approach to control systems with Real-Time parameters by controlling selected manipulating variable to accomplish the objectives. Shell and tube heat exchanger have been identified as process models that are inherently nonlinear and hard to control due to unavailability of the exact models’ descriptions. PC and analogue input output card will be used as the controller that controls the heat exchanger hot stream to the desired temperature.
The control methodology by using four speed pump as manipulating variable to control the temperature of the hot stream to cool to the desired temperature.
In this work, the dynamics of cross flow shell and tube heat exchanger is modeled from step changes in cold water f
Both type 1 diabetes and type 2 diabetes have a genetic component, with over 60 chromosomal regions related to type 1 diabetes and over 200 connected with type 2 diabetes at significant genome-wide levels. Numerous single nucleotide polymorphisms in the RETN gene and genetic variables can account for up to 70% of the variations in circulating resistin levels. The RETN polymorphism has been linked in numerous studies to obesity, insulin sensitivity, type 2 diabetes, and cerebrovascular illness. Our objective is to compare this RETN gene 3ʹ-untranslated region polymorphism in type 1 diabetes and type 2 diabetes Iraqi patients. We choose 51 type 1 diabetes and 52 type 2 diabetes patients against 50 healthy subjects (control group) to investig
... Show MoreThe paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be
... Show MoreA novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)
In this paper, a comparison between horizontal and vertical OFET of Poly (3-Hexylthiophene) (P3HT) as an active semiconductor layer (p-type) was studied by using two different gate insulators (ZrO2 and PVA). The electrical performance output (Id-Vd) and transfer (Id-Vg) characteristics were investigated using the gradual-channel approximation model. The device shows a typical output curve of a field-effect transistor (FET). The analysis of electrical characterization was performed in order to investigate the source-drain voltage (Vd) dependent current and the effects of gate dielectric on the electrical performance of the OFET. This work also considered the effects of the capacitance semiconductor on the performance OFETs. The value
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators