The interaction of charged particles with the chemical elements involved in the synthesis of human tissues is one of the modern techniques in radiation therapy. One of these charged particles are alpha particles, where recent studies have confirmed their ability to generate radiation in a highly toxic localized manner because of its high ionization and short its range. In this work, We focused our study on the interaction of alpha particles with liquid water; since the water represents over 80% of the most-soft tissues, as well as, hydrogen, oxygen, and nitrogen ,because they are key chemical elements involved in the synthesis of most human tissues. The mass stopping powers of alpha particle with HଶO , COଶ, Oଶ, Hଶ and Nଶhave been calculated in energy range (0.001-1000) MeV, using four methods (Beth-Bloch equation, Zeigler formula and SRIM2013 software, ASTAR program).We have produced semi-empirical formulas for calculating the mass stopping power of alpha particles, for such targets by knowing alpha particle energy. Comparing our results of the calculated mass stopping power with ICRU- Report 49 we find very good agreement between them, this confirms the ability of our result to be used in such cancer treatment and other fields where this quantity is used.
According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through
... Show MoreMammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
In this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreAccurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
Abstract Background: The emptied sheep’s ovarian follicles recently used as a container for spermatozoa during cryopreservation, it was found a proper carrier to cryopreserving spermatozoa in vapor-dependent cryopreservation. The aim of this study was to evaluate the effect of two periods of exposure to liquid nitrogen (LN2)vapor on the parameter of spermatozoa during cryopreservation in this technique. Method: The study was conducted on 30 semen samples from patients with oligozoospermia diagnosed by semen analysis according to the standard criteria of World Health Orgnization (WHO) 2010. Sheep’s ovarian follicles obtained from local slaughterhouse and prepared by slicing the ovaries and evacuating the follicular fluid and oocyt
... Show MoreIn this work, the extraction of glycyrrhizin from Licorice using bulk liquid membrane technique was developed and optimized. The effect of various parameters such as pH of stripping and donor solutions, temperature, stirring speed and kinetic parameters were investigated. Moreover, to study the impact of the polarity of membrane solvent, two types of extraction solvents were used as a membrane solvent: n-Hexane was used as a non-polar solvent and 1-Hexanol was as a polar solvent. The optimum extraction condition was found (95.53%) using 1-Hexanol, rotating speed was 400 rpm, and pH of the acceptor and donor solutions were 8 and 5.5, respectively. The reaction kinetics constants ( and ) for the transport of glycyrrhizin from the donor pha
... Show MoreThe automatic liquid filling system is used in different applications such as production of detergents, liquid soaps, fruit juices, milk products, bottled water, etc. The automatic bottle filling system is highly expensive. Where, the common filling systems required to complex changes in hardware and software in order to modify volume of liquid. There are many important variables in the filling process such as volume of liquid, the filling time, etc. This paper presents a new approach to develop an automatic liquid filling system. The new proposed system consists of a conveyor subsystem, filling stations, and camera to detect the level of the liquid at any instant during the filling process. The camera can detect accurately the leve
... Show MoreExtraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show MoreBox-Wilson experimental design method was employed to optimized lead ions removal efficiency by bulk liquid membrane (BLM) method. The optimization procedure was primarily based on four impartial relevant parameters: pH of feed phase (4-6), pH of stripping phase (9-11), carrier concentration TBP (5-10) %, and initial metal concentration (60-120 ppm). maximum recovery efficiency of lead ions is 83.852% was virtually done following thirty one-of-a-kind experimental runs, as exact through 24-Central Composite Design (CCD). The best values for the aforementioned four parameters, corresponding to the most restoration efficiency were: 5, 10, 7.5% (v/v), and 90 mg/l, respectively. The obtained experimental data had been
... Show More