The internet has been a source of medical information, it has been used for online medical consultation (OMC). OMC is now offered by many providers internationally with diverse models and features. In OMC, consultations and treatments are available 24/7. The covid-19 pandemic across-the-board, many people unable to go to hospital or clinic because the spread of the virus. This paper tried to answer two research questions. The first one on how the OMC can help the patients during covid-19 pandemic. A literature review was conducted to answer the first research question. The second one on how to develop system in OMC related to covid-19 pandemic. The system was developed by Visual Studio 2019 using software object-oriented approach. Online expert review was conducted within 6 experts from health and academic industry to verify the model. Also, the system was validated by 11 users from heath and academic industry to confirm its usability. The statistical package for social science (SPSS 22) was used to analyze the collected data. The result of expert review confirmed that covid-19 system can help the patients. Also, the validity of the system was confirmed by 11 users from health and academic industry.
Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Segmentation of urban features is considered a major research challenge in the fields of photogrammetry and remote sensing. However, the dense datasets now readily available through airborne laser scanning (ALS) offer increased potential for 3D object segmentation. Such potential is further augmented by the availability of full-waveform (FWF) ALS data. FWF ALS has demonstrated enhanced performance in segmentation and classification through the additional physical observables which can be provided alongside standard geometric information. However, use of FWF information is not recommended without prior radiometric calibration, taking into account all parameters affecting the backscatter energy. This paper reports the implementation o
... Show MoreIf we go beyond the technical aspects of the Web 2.0, and we focus specifically on its interactive characteristics, we may say it represents not only a fundamental shift in the structure of the press institutions and its practices but also a shift in the relationships that existed, previously, between the press and the audience. Web 2.0 has enabled the newspapers to renovate their representations and practices of the profession and opens to the new horizons either in terms of readership or advertising revenues. Parallel to that it also has empowered the user to transcend the passivity he has always been confined in and has become a more active participant in the creation and generation of media contents even though this practice is somew
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreThe main objective of this research is to use the methods of calculus ???????? solving integral equations Altbataah When McCann slowdown is a function of time as the integral equation used in this research is a kind of Volterra
Abstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col
... Show MoreIn this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the production of the inverted S-box with the S-box. Compared to the methods in the literature, the need to store the S-box is eliminated. Also, the fabr
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show More