Preferred Language
Articles
/
-BYTGIcBVTCNdQwCsDWG
Vertical and Lateral Displacement Response of Foundation to Earthquake Loading

Risks are confronting the foundations of buildings and structures when exposed to earthquakes which leads to high displacements that may cause the failure of the structures. This research elaborates numerically the effect of the earthquake on the vertical and lateral displacement of footing resting on the soil. The thickness of the footing and depth of soil layer below the footing was taken as (0.5, 1.0, and 2.0 m) and (10, 20 and 40m), respectively. The stiffness ratio of soil to footing was also elaborated at 0.68, 0.8, 1.0, and 1.7. The results showed an increase in the verticle displacement of footing as the duration of the earthquake increases. The increase of soil layer thickness below the footing leads to a reduction in the vertical and lateral displacement. While an increase in the thickness of the footing leads to a decrease in the lateral displacement of the footing meanwhile no effect was noticed in the vertical displacement. It was noticed that the time lag between the maximum vertical displacement and the highest value of the earthquake loading is about 0.27 s. It was found that as the distance between the footing and the source of earthquake load increases, the effect of damping on the earthquake load increases while the lateral displacement decreases. The results revealed that an increase in the stiffness ratio leads to a decrease in the vertical displacement and a reduction in the response of the lateral displacement till reaching the value of stiffness ration of unity.

Clarivate Crossref
View Publication
Publication Date
Wed Sep 15 2021
Journal Name
Geomechanics And Geoengineering
Scopus (3)
Crossref (5)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
The Open Civil Engineering Journal
Experimental Investigation of Skirt Footing Subjected to Lateral Loading
Background:

The skirt foundation is one of the powerful types of foundations to resist the lateral loads produced from natural forces, such as earthquakes and wind action, or from the type of structures, such as oil platforms and offshore wind turbines.

Objective and Methodology:

This research experimentally investigated the response of skirted footing resting on sandy soil of different states to lateral applications of loads on a small-scale physical model manufactured for this purpose. The parameters studied are the dista

... Show More
Crossref (2)
Crossref
View Publication
Publication Date
Tue Mar 01 2016
Journal Name
Applied Research Journal
Response of R.C. Barriers Subjected to TNT Explosion Blast Loading

Reinforced concrete barriers have been commonly used in protecting the important building because the response of R.C. barriers subjected to blast loading is practically more acceptable than other materials used to build the barriers. In this study, the response of R.C. barriers was detected due to the blast effects caused by two charge weights (50 kg and 400 kg); ANSYS 14 was used to simulate the problem. A horizontal distance of 2 m between the explosive TNT charge and the front face of wall was taken. The pressure on the front face of the concrete barriers was measured at three levels. The R.C. barrier was entirely damaged when subjected to the blast effects caused by 400 kg TNT explosion bomb. However, the 50 kg TNT charge had

... Show More
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Response of Laced Reinforced Concrete One Way Slab to Repeated Loading

Test results of nine reinforced concrete one way slab with and without lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural response of one way slabs. The test parameters were considered is the lacing steel ratios of (0, 0.0025, 0.0045, and 0.0065), flexural steel ratios of (0.0025, 0.0045, and 0.0065) and span to the effective depth ratios of (11, 13, and 16). Two specimens had no lacing reinforcement and the remaining seven specimens had the lacing reinforcement. Four point bending test were carried out, one of the specimens was tested under the static load applied gradually up to failure and the other specimens were tested under repeated load (5 cyc

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2010
Journal Name
Journal Of Engineering 5263
COUPLED VERTICAL – TORSIONAL AND LATERAL FREE VIBRATION OF THIN-WALLED CURVED BEAM

This study is concerned with the derivation of differential equation of motion for the free coupled vertical – torsional and lateral vibration of opened thin-walled curved beams. The curved beam to be considered in this study is of isotropic opened thin – walled (I) section with equal top and bottom flanges. The derivation depends on Hamilton's principle which required finding the potential and kinetic energy of the curved beam section due to internal stresses and all types of movements (Vertical,Torsional and Lateral) .The effect of restrained warping displacement is also considered in this study. Three differential equations are derived for vertical, torsional and lateral movement .and approximate solutions are developed by using the

... Show More
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
The Behavior of Gypseous Soil under Vertical Vibration Loading

The dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Jul 25 2016
Journal Name
Earthquakes And Structures
Vibration response of saturated sand - foundation system

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated paramete

... Show More
View Publication
Publication Date
Wed Mar 25 2020
Journal Name
2nd International Conference On Materials Engineering & Science (iconmeas 2019)
Foundation relative stiffness effects in sand under static loading

In the geotechnical engineering applications, precise understandings are yet to be established on the effects of a foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available construction materials that totally change the relative stiffness of the footing structures-soil interactions such as waste material and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing and thus cannot be used for reduced foundation rigidity. Therefore, this study investigates the effects of foundation relative stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings on su

... Show More
Scopus (2)
Crossref (3)
Scopus Crossref
View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Scopus Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Calculating the Vertical Displacement using the Method of Least Squares Adjustment and 3D Objects Fitting
Abstract<p>In this research, the Iraqi flagpole at Baghdad University, which is the longest in Baghdad, with a height of 75m, was monitored. According to the importance of this structure, the calculation of the displacement (vertical deviation) in the structure was monitored using the Total Station device, where several observations were taken at different times for two years the monitoring started from November 2016 until May 2017, at a rate of four observations for one year. The observation was processed using the least square method, and the fitting of circles, and then the data was processed. The deviation was calculated using the Matlab program to calculate the values of corrections, where </p> ... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication